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ABSTRACT 

Biogeochemical cycles in ecosystems regulate the flow of energy between reduced 

species (typically carbon compounds) and a variety of oxidants via both biotic and abiotic 

reactions. A key class of chemical compounds that can link these cycles through abiotic 

pathways are Reactive Oxygen Species (ROS). The production of ROS via photochemical 

pathways is well known. More recently, the non-photochemical production of ROS via the 

one electron oxidation of ferrous iron (Fe(II)) by dioxygen (O2) has been detected in a 

range of environments. The oxidation of Fe(II) initiates a pathway that generates an array 

of ROS as Fe is cycled between Fe(II) and Fe(III) oxidation states. This dissertation 

presents studies to investigate the oxidation kinetics of Fe(II) and its role in producing and 

maintaining ROS at oxic-anoxic boundaries.  

The determination of the rate constant for the reaction of Fe(II) and dioxygen is a 

challenge due to the difficulty in isolating the reaction from an assortment of simultaneous 

reactions involved in the Fe cycling process. The second order reaction rate evaluated using 

a competition kinetics method against a series of Fe-binding ligands was determined to be 

within 7x108- 2x109 M-1s-1. This fast reaction kinetics suggest that in natural environments, 

oxic-anoxic interfaces can trigger the rapid generation of ROS.   

Historically salt marshes are associated with rapid primary production of plant 

material but low subsequent decomposition due to physical limitation of oxygen 

availability. Oxygen transport into carbon rich sediments is thought to be limited by low
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 permeability in the fine-grained marsh sediments. Physical characteristics arising from 

marsh grass rhizosphere and benthic burrows can greatly alter the flow dynamics 

enhancing the advective flow of oxygen rich water into marsh sediment containing reduced 

species such as Fe(II). Radium tracer studies based on 228Th/224Ra disequilibrium were 

employed to assess the water exchange through a coastal marsh system. The greater flow 

and heightened mixing efficiency promote the trapping of particle phases and the transport 

of oxygen and other terminal electron acceptors to aid the organic carbon oxidation.  

The production of ROS in the absence of light was verified in the organic carbon 

rich sediment around the rhizophere of the common marsh grass, Spartina alterniflora. 

Metastable mixtures of Fe(II), O2 and ROS were measured over several seasons. This 

finding indicates an abiotic pathway for ROS generation and a subsequent ROS mediated 

mechanism for the degradation of organic carbon in aquatic environments. Ultimately, 

these processes affect the carbon burial capacity and the export of carbon flux to the oceans 

making these ecosystems key players in regulating global carbon budgets.    
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www.manaraa.com

2 

 

1.1 Abstract 

 The second order rate constant for the Fe2+ reaction with dioxygen reported in 

literature shows significant disparity. The presence of a number of parallel second order 

reactions in the iron cycling process makes it a challenge to isolate the Fe2+-O2 reaction 

and determine the rate constant using kinetic models. Here, results from a competition 

kinetics study to determine the value of the Fe2+ oxidation rate constant are presented. 

When Fe2+ is introduced to an oxygenated system containing an Fe2+ chelator, the ligand 

and dioxygen simultaneously compete to react with Fe2+. When no interfering side 

reactions are present, such a system can be manipulated to establish the Fe2+ oxidation rate 

constant, using the well-known formation rate constants for Fe2+-ligand complexes as 

references. Here, phosphate was used to selectively complex Fe3+ and inhibit the 

regeneration of Fe2+. 1,10-Phenanthroline and 2,2’-Bipyridine were used as reference 

compounds and the fraction of Fe2+ reacted with the ligand was determined 

spectrophotometrically. The calculated rate constant falls in the range of 1.3x107 – 1.9x108 

M-1s-1. This is several orders of magnitude higher than previously reported values and is 

comparable to the reaction rate constant of the back reaction between Fe3+ and superoxide.   

1.2 Introduction 

 For decades, the efforts to measure the oxidation rate of Fe2+ have been a challenge 

due to the complicated nature of the iron cycling process. This process is comprised of 

several simultaneous second order reactions, making the isolation of the initial oxidation 

step (reaction 1.1 below) a difficult task. In order to minimize the complications imposed 

by the back reaction, many studies have been carried out at nanomolar levels of iron.1-5 
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However, even at such levels, the back reaction can still be significant in regenerating Fe2+. 

Unless caution is taken to block the back reaction to negate its impact on the Fe2+ oxidation, 

an artefact is introduced into the calculations. Different species such as Br-, Cl- or CO3
2- 

are commonly introduced as sources to outcompete iron and react with superoxide. 

However, the introduction of such species complicates the system matrix, leading to the 

formation of various iron species that react at different reaction rates with dioxygen and 

other oxidants. Since, the exact reaction rate constants for all these reactions are unknown, 

computing the Fe2+ oxidation rate constant becomes complex and often lead to circular 

references.  

 The cycling of iron between its Fe2+ and Fe3+ oxidation states plays a significant 

role in iron solubility and bioavailability in aquatic environments.6-10 The one-electron 

oxidation of Fe2+ to Fe3+ (reaction 1.1 below) is the initial step in the net oxidation and 

subsequent removal of Fe from the dissolved phase. This reaction initiates the production 

of reactive oxygen species (ROS) as shown in reactions 1.2-1.4 below. However, the 

resultant Fe3+ can be rapidly regenerated back to Fe2+ through reaction of Fe3+ with a 

number of possible electron donors including ROS and reduced sulfur species.11-20 In 

aquatic systems, the persistence of the cycle is limited by the availability of electron donors 

and/or the precipitation of Fe3+ as soluble complexes. The residence time of Fe2+ in aquatic 

systems is a function of the relative net rates of the reactions within the cycle.  Reactions 

1.1- 1.4 represent the proposed catalytic mechanism for the redox cycling of iron species 

with ROS.  

Fe2++O2 ⇋ Fe3++O2
.-
                     reaction 1.1 

Fe2++O2
.-
 → Fe3++H2O2                reaction 1.2 
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Fe2++H2O2 → Fe3++HO
.
              reaction 1.3 

Fe2++HO
.
 → Fe3++HO

-
                reaction 1.4 

 While numerous studies have been conducted to examine various aspects of this 

redox process, the rate of the reaction between Fe2+ and molecular oxygen (reaction 1.1) is 

not well constrained. This reaction is the critical initiating step of the process and proper 

understanding of its thermodynamic and kinetic characteristics are of high importance to 

explain and predict how the iron redox cycling and the ROS generation would proceed in 

natural systems. The reported second order rate constants for the reaction between Fe2+ and 

dioxygen (forward reaction 1.1) vary between 0.058 – 170 M-1s-1.21-25 Pulse radiolytic 

studies report a rate constant of 1.5x108 M-1s-1 for the reverse reaction 1 which was re-

assessed and shown to be valid at seawater pH.20,26 These rates should heavily favor the 

reverse reaction over the forward reaction, suggesting Fe2+ should be the more kinetically 

stable species in aqueous medium. However, the opposite appears to hold true as the one 

electron oxidation of Fe2+ under many oxygenated conditions yields Fe3+ as the more stable 

of the two species. Thus, there is a discrepancy between the reported reaction rates and 

what is practically observed for reaction 1.1. For Fe3+ to be the more kinetically stable 

species in a system, the magnitude of the rate limiting forward reaction 1.1 should be 

comparable to that of the reverse reaction.  

 The widely-used method for investigating the kinetics of the iron oxidation reaction 

has been to monitor the loss of Fe2+ over time under different experimental conditions and 

model the rate constant as a fitted parameter of a kinetic model.2,21,27 Here, it is important 

to establish first order reaction kinetics with respect to one reactant so that the array of 

reactions can be integrated together and ultimately isolate the Fe2+ oxidation reaction by 
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dioxygen and elucidate its reaction kinetics. If such (pseudo) first order conditions are not 

met, it can introduce an artefact to the rate calculations. Moreover, as the number of kinetic 

parameters incorporated in the model increase, the error introduced through the 

uncertainties in published rate constants can have a significant effect on the model 

outcome. Most of the early kinetic studies at micro molar levels of Fe2+ disregard the 

impact of the reverse reaction. Studies by Burns et.al. report that Fe2+ concentrations 

greater than 4 µM leads to iron cycling up to 10 – 2200 times before its net oxidation.16,17 

Regeneration of Fe2+ via the reaction of Fe3+ with superoxide would lead to 

underestimation of the rate constant for the forward reaction. 

 An alternative approach for investigating the kinetics of a fast reaction is the 

method of competition kinetics. This is a well-established method where an unknown 

reaction is tested together with a similarly fast reaction with a known rate constant, 

competing for the same substrate.28-37 Since the rate of the unknown reaction is measured 

relative to a reference reaction it eliminates the need for direct monitoring of the unknown 

reaction.  

 When two reactants (A and B) compete for the same substrate (X), the fraction of 

X reacting with A can be given by the following expression (Eq 1.1). 

fraction of X reacting with A=
k1[A][X]

(k1[A][X]+k2[B][X])
                             Eq 1.1 

            where k1 and k2 are the respective reaction rate constants for A and B with X.  

 When the reaction kinetics of one of the reactants is known, it can be treated as a 

reference compound. By measuring the fraction of the substrate reacting with the reference 
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probe, either as the formation of the product or the disappearance of the reference 

compound, the rate constant for the second reaction can be calculated.  

 The competition kinetics method for systems involving iron chemistry has been 

used to elucidate Fenton chemistry, i.e. the reaction between Fe2+ and H2O2 and the 

consequent oxidation of organic compounds by hydroxyl radicals.38-40 A series of studies 

by Kolthoff and Medalia assessed the stoichiometry of Fe2+ / H2O2 reaction in the presence 

of different organic compounds.41,42 These experiments conducted in the absence of 

oxygen showed Fe2+ and H2O2 competing for .OH. In the presence of oxygen, the kinetics 

of the reaction system was complicated as oxygen outcompeted H2O2 to react with Fe2+, 

disrupting the predicted stoichiometric outcome for the Fenton reaction. While these 

studies were not focused on calculating rate constants, they are early examples where 

competition reaction kinetics has been employed to explore the differences in relative 

reactivities of reactions in the iron cycling process.  

 To the best of our knowledge no previous studies have been reported where a 

competition kinetic approach has been employed to evaluate the intrinsic value of the rate 

constant for the Fe2+ - dioxygen reaction. Here, a study conducted in an effort to assess this 

second order rate constant using a two-competing reaction system is presented. Different 

ligands can form intensely colored complexes upon reacting with Fe2+ that can be 

quantified using spectrophotometry. The rate constants for these reactions are well 

established in literature, thus can be used as reference compounds in a competition kinetic 

setup. For this study, separate experiments were conducted with each of two ligands, 1,10-

Phenathroline and 2,2’-Bipyrindine. Experimental conditions were manipulated to 

eliminate contributions of the back reaction to measured rates, e.g. addition of PO4
3- to 
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complex the Fe3+. The goal was to generate a system that can be modeled as a two-reaction 

system where the ligand and dioxygen compete simultaneously for Fe2+.   

1.3 Experimental Methods  

Materials 

   Iron(II) chloride, anhydrous (99.5%) was purchased from Alfa Aesar. 1,10-

Phenanthroline (> 99%) was acquired from Acros Organics and 2,2’-Bipyridine from JT 

Baker. HEPES (≥ 99.5%) was obtained from Sigma-Aldrich. Sodium phosphate 

monobasic (100%) and Sodium phosphate dibasic heptahydrate (98.9%) were purchased 

from Fisher Scientific. All solutions were prepared in 18 MΩcm-1 water. For Fe(II) stock 

solutions, water was boiled for one hour and kept under nitrogen to maintain oxygen free 

conditions.  

Analytical Methods 

  Fe(II) was quantified colorimetrically using 1,10-Phenanthroline 43-45 and 2,2’-

Bipyridine 46-48 using a Spectramax M5 UV-Vis scan microplate reader (Table 1.1). The 

oxygen concentrations of the solutions were measured using a four-channel fiber optic 

oxygen meter (Pyroscience Firesting O2 FSO2-0x) coupled with bare fiber minisensors 

(OXB430). A Thermo Scientific Orion 5-star pH meter was used to make pH adjustments.  

Fe2+ oxidation experiments 

  Solutions buffered at pH 7.8 (25 mM HEPES) were spiked with Fe2+ to reach an 

initial concentration of 25 µM. Samples were withdrawn from the reactor at different time 

points and the Fe2+ was quantified using 1,10-Phenanthroline and 2,2’-Bipyridine (ligand 

concentration = 1 mM). Experiments were run in triplicate for each ligand.  
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Competition kinetics experiments 

 Phosphate solutions of varying concentration (as total phosphate; 5 – 900 mM) 

were prepared using NaH2PO4.H2O and Na2HPO4.7H2O and pH adjusted to 7.8. At each 

phosphate concentration, a series of solutions were prepared by varying the ligand 

concentration (1,10-Phenanthroline or 2,2’-Bipyridine) in the range 75 – 2000 µM. To 

initiate the reaction, each vial containing the ligand and phosphate was spiked with Fe2+ to 

reach a concentration of 25 µM. The concentration of the colored complex formed was 

determined spectrophotometrically. Since the Fe2+ reaction with dioxygen does not 

produce any colored species, the fraction of Fe2+ reacting with the chelator can be 

calculated. All experiments were run in triplicates.  

 Multifactorial Design Experiments 

  To investigate the possibility of interactions between ligands, high levels of 

phosphate and Fe3+ that would introduce a defect to the observed outcome, 3-factor Box-

Wilson central composite designs were used to examine the relationship between 

phosphate (pH 7.8), Fe3+ and each ligand (Table 1.2) on the formation of the Fe(II)-ligand 

complexes. Using Design Expert software, the parameter space was set by allotting the 

concentration range for each variable at five levels. The overall matrix contained 20 

experimental conditions with 6 replicates at the center point and 3 replicates for all other 

conditions summing to a total of 48 individual experiments for a given ligand. A single 

matrix was performed for each ligand; 1,10-Phenanthroline and 2,2’-Bipyridine. To initiate 

the reaction, a 25 µM Fe(II) spike was made to each reactor and the amount of Fe(II)-ligand 

complex formed was determined spectrophotometrically. 
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1.4 Results  

 In the oxygenated solutions, Fe2+ was rapidly oxidized over time and the observed 

decay was comparable with both ligands (Figure1.1).  The oxidation was first order with 

respect to Fe2+ and the calculated rate constant (kobs) for each ligand series resulted in 

similar values (Figure 1.2) with an average kobs of 0.0062(±0.0004) s-1. With the measured 

oxygen concentration of 260 µM, this correspond to a second order rate constant of 23.9 

(±1.5) M-1s-1.  

 In the competitive kinetics experiments, at all phosphate concentrations, increasing 

the ligand concentration gradually increased the fraction of Fe2+ reacting with the ligand 

before completely outcompeting dioxygen and reaching a plateau point (Figure 1.3). Under 

conditions where Fe3+ is rapidly scavenged by the reaction with PO4
3-, equation 1.1 

becomes a competitive reaction system between O2 and ligand (L) (Eq 1.2). This can be 

rearranged to plot the data such that the second order rate constant for Fe2+ autoxidation is 

represented in the slopes of plots between 1/fraction of Fe2+ reacting with the ligand and 

1/[ligand]3 (Eq 1.3). The validity of the method is tested by the linearity of this relationship. 

The solution oxygen concentrations measured were at saturated levels (̴ 260 µM) during 

the course of the experiment. This  ̴ 10-fold excess of dioxygen over Fe2+ ensures that the 

Fe2+ oxidation reaction is first order with respect to Fe2+. Since the complexation rate (kL) 

for each ligand is known (Table 1.1), the reaction rate for Fe2+ oxidation (kox) can be 

calculated.  

fraction of Fe2+ reacting with ligand =
kL[L]3[Fe2+]

(kL[L]3[Fe2+]+kox[O2][Fe2+])
    Eq 1.2 

when, the fraction of Fe2+ reacting with ligand=X 
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1

X 
 = 1+

kox[O2]

kL
.

1

[L]3
                                                                                                 Eq 1.3 

 The data plotted according to equation 3 was linear in the considered range (Figure 

1.4) and an absolute value of the second order rate constant for Fe2+ autoxidation for each 

phosphate level was calculated using the slopes of each graph.  

 For both ligands, the calculated second order rate constant increased with 

increasing phosphate until it plateaued. With 1,10-Phenanthroline, for total phosphate 

concentrations over 0.3 M, a rate constant of 1.9(±0.3) x108 M-1s-1 was calculated (Figure 

1.5). The value computed using 2,2’-Bipyridine was 1.3(±0.2) x107 M-1s-1, recorded for 

total phosphate over 0.5 M (Figure 1.6). Thereby, the second order rate constant for Fe2+ 

reaction with O2 was calculated to be in the range between 1.3x107 – 1.9x108 M-1s-1.   

  The relationship between the Fe2+-ligand complex formed and the three variables 

(ligand, phosphate and Fe3+) was evaluated by fitting a quadratic equation to a response 

surface describing the observable versus the three factors and their possible interactions. 

These quadratic expressions for all three matrices include the three factors (x1, x2, x3), 

linear coefficients for each term (β1, β2, β3), squared coefficients (β11, β22, β33), cross 

product coefficients (β12, β23, β13) and a constant term (β0) (Eq 1.4).  

[Fe2+L3]=β
0
+ β

1
x1+β

2
x2+β

3
x3+β

11
x1

2+β
22 

x2
2+β

33
x3

2+β
12

x1x2+β
13

x1x3+β
23

x2x3  

                Eq 1.4 

 These quadratic expressions were simplified by including only the factors that are 

statistically significant (p ≤ 0.05) for the outcome (Eqs 1.5 and 1.6). All β values were 

modeled by the Design Expert software and the ratio between the sum of squares for each 
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factor and the sum of squares for the model is used to determine the percentage impact of 

each factor towards the outcome (Table 1.3-1.8). Both response surfaces correlated well 

with the observed outcome with r2 values of 0.891(Fe-Phen) and 0.950 (Fe-Bipyr).  

[Fe2+Phen3]=β
0
+ β

1
x1+β

2
x2+β

3
x3+β

11
x1

2                                                     Eq 1.5 

[Fe2+Bipyr
3
]=β

0
+β

1
x1+β

2
x2+β

3
x3+β

11
x1

2+β
33

x3
2+β

13
x1x3+β

23
x2x3              Eq 1.6 

 Based on these calculations, for the formation of Fe2+-1,10-Phenanthroline 

complex, [Phen] accounted for 45% of the model while [PO4
3-] (21%) and [Phen]2 (22%) 

also made significant impacts. [Fe3+] played a minor role accounting for only 7% of the 

model. [Bipyr] (45%) and [PO4
3-] (26%) were the two major factors impacting the model 

for Fe-2,2’-Bipyridine complex formation. Five other terms were deemed to be minor 

contributors with each accounting for less than 10% of the model. These factors were 

[Fe3+], [Bipyr]2, [Fe3+]2, [Bipyr-PO4
3-] and [PO4

3--Fe3+]. The sign of βx indicate the 

direction of the action of each factor with positive coefficient indicating an increase in the 

ligand complex formation and a negative coefficient indicating a decrease in the complex 

formation. For all three matrices, ligand concentration had a positive coefficient while that 

for PO4
3- concentration was negative.  

1.5 Discussion 

 The Fe2+ oxidation experiments were conducted in oxygen saturated solutions, 

where oxygen was never limiting, resulting in first order oxidation conditions with respect 

to Fe2+. The complexation reactions of the ligands with Fe2+ are essentially competition 

reactions between dioxygen and ligand. When the ligand is present in high enough 
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concentrations, it outcompetes oxygen to bind all available Fe2+. In the absence of such 

competition, the observed oxidation kinetics should yield similar results regardless of the 

complexing ligand. This is evident by the resultant rate constants (kobs) calculated, using 

the Fe2+ decays quantified using the two different ligands.  

 When a ligand is present at a level where dioxygen in the system can successfully 

compete with the ligand for the reaction with Fe2+, a competition reaction system is 

established.  Here, in contrast to the earlier case, the level of competition by each ligand is 

dependent on the formation rate of the Fe2+-ligand complex. This concentration dependent 

competition can be utilized to deduce an unknown rate entity relative to a well-known 

reaction rate. This approach was necessary to test the hypothesis that the Fe2+ reaction with 

dioxygen is comparable in magnitude, to the reverse reaction of Fe3+ reacting with 

superoxide (1.5x108 M-1s-1). The hypothesis reflects the kinetic stability of Fe3+ under oxic 

conditions. For the two ligands 1,10-Phenanthroline and 2,2’-Bipyridine the stability 

constants are 3x1021 and 1.21x1017 M-3s-1 respectively.43,47 As evident by these high 

stability constants, once these ligands complex with Fe2+, the complexes are very stable in 

aqueous media. Fe3+ has been observed to form Fe3+-Phen complexes causing an 

interference for the colorimetric determination of Fe2+ by 1,10-Phenanthroline. However, 

this interference has been found to be significant only when Fe3+ is present at millimolar 

levels.49 

 According to the reaction rates for superoxide disproportionation50, as the fraction 

of O2
.- increases, the disproportionation becomes less important, and the Fe3+ reaction with 

superoxide becomes more significant. Therefore, phosphate was used as an Fe3+ chelator 

to impede the effects of the back reaction. Phosphate competes with superoxide for Fe3+, 
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and when present in adequate amounts it outcompetes superoxide to completely block Fe2+ 

regeneration by the back reaction. Thereby, a two-competing reaction system is 

established, where dioxygen competes with a chelating ligand for Fe2+. Hence, for the 

accurate measurement of the oxidation rate constant, the reverse reaction should be blocked 

to prevent Fe3+ from regenerating Fe2+. In our study, this was achieved by employing 

phosphate as the Fe3+ scavenger.   

 The second order rate constant calculated using the two separate ligands agree well 

with each other ranging from 1.3x107 – 1.9x108 M-1s-1. The magnitude of this range is on 

the order of the rate of the back reaction of Fe3+ with superoxide.  Thus, Fe2+ autoxidation 

should successfully compete with the back reaction to ultimately drive the reaction scheme 

forward to make Fe3+ the more stable species in the system. Due to the uncertainty 

surrounding the reported rate constants in literature, it is difficult to compare our results 

with a reference value. However, the experimental range obtained in this study is several 

orders of magnitude greater than previously reported numbers.  

 The phosphate concentration at the graph plateauing point (Figures 1.5 and 1.6) is 

assumed to be the phosphate concentration required to effectively bind and prevent Fe3+ 

from taking part in the cycling process such that further input of the scavenger produces 

no significant change to the Fe2+ autoxidation rate. At the reaction pH (7.8) the dominant 

species of phosphate are H2PO4
- and HPO4

2-. Therefore, while millimolar levels of total 

phosphate concentrations used in the experiments, PO4
3-, existed only at low micro molar 

levels. Out of the two ligands, 2,2’-Bipyridine required a higher phosphate concentration 

to completely sequester Fe3+. Compared to 1,10-phenanthroline, 2,2’-Bipyridine has a 

slower reaction rate with Fe2+. Therefore, for a given set of conditions, the fraction of Fe2+ 
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reacting with O2 is higher for 2,2’-Bipyridine. Consequently, this leads to a higher 

generation of Fe3+, requiring a larger amount of phosphate to complex it.  

 A third set of experiments was run parallel to deduce the oxidation rate constant 

using ferrozine as the Fe2+ binding ligand (Figures 1.7-1.11, Tables 1.9-1.11). However, 

this proved to be problematic due to the comparatively lower reaction rate of ferrozine with 

Fe2+ (kferrozine = 3.0x1011 M-1s-1).51 Compared to the other two ligands, this lower binding 

rate makes the competition by dioxygen more prominent in the presence of ferrozine 

leading to higher levels of Fe3+ and superoxide to be generated in the medium. Thereby, 

the amount of phosphate required to completely block the back reaction in the presence of 

ferrozine proved to be too high, that it exceeded the limits of complete phosphate solubility. 

Furthermore, the charged nature of ferrozine requires amending for ionic strength effects. 

At such elevated phosphate concentrations, the ionic strengths of the solutions are too high 

to make reasonable adjustments for activity coefficients. Therefore, we believe the results 

obtained using ferrozine as the reference are unreliable and were not included in the rate 

constant calculations.  

 The phosphate induced acceleration in Fe2+ oxidation has been observed under 

different conditions irrespective of the matrix constituents.16,17 In addition to phosphates, 

any ligand that masks Fe3+ and blocks the back reaction can prompt rapid Fe2+ oxidation. 

In natural waters, hydroxides, carbonates and various organic ligands can act as Fe3+ 

chelators resulting in the accelerated rates of Fe2+ oxidation observed in oxic-anoxic 

interfaces. 16-19, 23-24, 52 

  ANOVA results from the multivariate experiments show that for both ligands, the 

formation of the Fe2+-ligand complex is predominantly a function of the ligand and the 
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phosphate concentrations. Interactions between ligand and Fe3+ or ligand and phosphate 

were determined to have minimal effect on the observable with impacts typically under 

10%. This shows that except for the ligand and dioxygen competing for Fe2+, other 

interactions between participating species can be considered to be negligible for the 

formation of Fe2+-ligand complex. Therefore, it is reasonable to treat the system as a two-

reaction system competing for Fe2+. The validity of the competition kinetics technique 

applied to the system is further evidenced by the linear correlation exhibited by the data 

following equation 3 (Figure 1.4). 

 The impact on the outcome (i.e. the Fe2+-ligand complex formation) was positive 

for the ligand concentration, which is expected since increasing levels of the ligand 

promote the binding of Fe2+. For phosphate, the impact was negative. When phosphate 

complexes Fe3+, the cycling of iron is hindered, increasing the net iron oxidation. In such 

case, the relative effectiveness of the competition by dioxygen is increased leading to a 

lower fraction of Fe2+ reacting with the ligand.  

1.6 Conclusion 

            The competition kinetics method was used to assess the reaction rate for the 

reaction of Fe2+ with dioxygen at circumneutral pH. As the fraction of O2
.- increases, the 

disproportionation of superoxide becomes less important, and the Fe3+ reaction with 

superoxide becomes more significant. Therefore, phosphate was used as an Fe3+ chelator 

to impede the effects of the back reaction. Phosphate competes with superoxide for Fe3+, 

and when present in adequate amounts it outcompetes superoxide to completely block Fe2+ 

regeneration by the back reaction. Thereby, a two-competing reaction system is 
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established, where dioxygen competes with a chelating ligand for Fe2+. The calculated rate 

constant falls within the range 1.3x107 – 1.9x108 M-1s-1. This is several orders of magnitude 

greater than what has been previously determined with kinetic modeling approaches. This 

range is reasonable to suggest that Fe2+ can successfully compete with the Fe3+-superoxide 

reaction in order for Fe3+ to be the more stable species under oxic conditions.   
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Table 1.1: Absorption maxima, molar absorptivity and the complexation rate with Fe2+ 

for the two ligands used in the competitive kinetics study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ligand λmax 

(nm) 

Molar absorptivity 

(M-1cm-1) 

Complexation rate with Fe2+ 

(M-3s-1) 

1,10-Phenanthroline 508 11100 2.9(±0.5) x1016 

 

2,2’-Bipyridine 522 8650 1.4(±0.2) x1013 
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Table 1.2: Parameter space for the central composite experimental design 

The respective ligand for each matrix was either 1,10-Phenanthroline or 2,2’-Bipyridine. 

Factor (units) Factor concentration levels 

Coded factor levels -2 -1 0 1 2 

[PO4
3-] total (mM) 5 186.4 452.5 718.6 900 

[ligand]     (µM) 50 465.2 1037.5 1609.8 2000 

[Fe3+]        (µM) 0 50.7 125 199.3 250 
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Table 1.3: Experimental conditions and the observed response for 1,10-Phenanthroline 

matrix. 

 Factor 1 Factor 2 Factor 3 Response                 Response RSD 

Run A: [1,10-Phen] B: [PO4]
3-

total C: [Fe3+] [Fe-(Phen)3]  

 (µM) (mM) (µM) (µM) (%) 

1 2000.0 452.5 125.0 2.78E-05 5.0 

2 1609.8 718.6 199.3 2.58E-05 2.6 

3 465.2 186.4 199.3 2.58E-05 0.1 

4 1037.5 452.5 125.0 2.64E-05 3.5 

5 1037.5 452.5 125.0 2.59E-05 3.4 

6 1609.8 186.4 50.7 2.42E-05 7.4 

7 1037.5 452.5 125.0 2.53E-05 3.5 

8 1609.8 718.6 50.7 2.34E-05 17.6 

9 465.2 186.4 50.7 2.15E-05 7.1 

10 1037.5 452.5 125.0 2.62E-05 2.8 

11 1037.5 452.5 125.0 2.49E-05 3.6 

12 75.0 452.5 125.0 1.29E-05 13.3 

13 1037.5 452.5 125.0 2.81E-05 3.2 

14 465.2 718.6 50.7 2.06E-05 3.6 

15 465.2 718.6 199.3 1.93E-05 16.7 

16 1037.5 5.0 125.0 3.07E-05 2.9 

17 1037.5 452.5 0.0 2.35E-05 3.8 

18 1609.8 186.4 199.3 2.95E-05 3.7 

19 1037.5 452.5 250.0 2.65E-05 9.5 

20 1037.5 900.0 125.0 2.15E-05 4.1 
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Table 1.4: Experimental conditions and the observed response for 2,2’-Bipyridine 

matrix. 

 Factor 1 Factor 2 Factor 3 Response                 Response RSD 

Run A: [2,2’-Bipyr] B: [PO4]
3-

total C: [Fe3+] [Fe-(bipyr)3]  

 (µM) (mM) (µM) (µM) (%) 

1 1037.5 452.5 125.0 2.14E-05 2.9 

2 1037.5 452.5 125.0 2.42E-05 3.0 

3 75.0 452.5 125.0 6.32E-06 10.7 

4 1037.5 452.5 125.0 2.22E-05 5.6 

5 465.2 186.4 199.3 2.33E-05 1.4 

6 465.2 718.6 50.7 1.00E-05 22.2 

7 465.2 718.6 199.3 1.41E-05 16.7 

8 1037.5 900.0 125.0 1.70E-05 1.9 

9 1609.8 718.6 199.3 1.62E-05 2.0 

10 1609.8 186.4 50.7 2.43E-05 13.1 

11 1037.5 452.5 125.0 2.21E-05 1.6 

12 1037.5 452.5 250.0 2.17E-05 5.3 

13 1037.5 452.5 125.0 2.21E-05 2.8 

14 1609.8 186.4 199.3 3.08E-05 4.1 

15 1609.8 718.6 50.7 2.42E-05 3.0 

16 1037.5 452.5 125.0 1.94E-05 1.7 

17 1037.5 452.5 0.0 1.44E-05 2.3 

18 1037.5 5.0 125.0 2.93E-05 1.3 

19 465.2 186.4 50.7 1.47E-05 16.0 

20 2000.0 452.5 125.0 2.47E-05 1.3 
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Table 1.5: Estimates and hypothesis tests for the parameters of the quadratic model fitted 

to the data for the concentration of the Fe2+-(Phen)3 complex formed. 

Parameter βx key 

Coefficient 

estimate 

Standard 

Error F Value 

p-value-

Prob > F 

% 

impact 

β0 intercept 26.12 0.740 
   

β1 1,10-Phen 2.98 0.491 36.93 1.19E-4 45.41 

β2 PO4
3- -2.00 0.491 16.77 2.16E-3 20.62 

β3 Fe3+ 1.16 0.491 5.61 3.93E-2 6.91 

β12 [Phen]-[ PO4
3-] 0.36 0.641 0.31 0.59 0.38 

β13 [Phen]-Fe3+ 0.57 0.641 0.78 0.40 0.96 

β23 [PO4
3-]-Fe3+ -1.06 0.641 2.75 0.13 3.38 

β11 [Phen]2 -2.01 0.478 17.79 1.78E-3 21.87 

β22 [PO4
3-]2 0.01 0.478 5.26E-4 0.98 6.47E-4 

β33 [Fe3+]2 -0.39 0.478 0.66 0.43 0.82 
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Table 1.6: Estimates and hypothesis tests for the parameters of the quadratic model fitted 

to the data for the concentration of the Fe2+-(bipyr)3 complex formed. 

Parameter βx key 

Coefficien

t estimate 

Standard 

Error F Value 

p-value-

Prob > F 

% 

impact 

β0 intercept 21.86 0.767 
   

β1 2,2’-Bipyr 4.71 0.509 85.51 3.24E-06 44.67 

β2 PO4
3- -3.61 0.509 50.24 3.34E-05 26.24 

β3 Fe3+ 1.71 0.509 11.26 7.30E-3 5.88 

β12 Bipyr-[ PO4
3-] -0.11 0.664 0.029 0.87 0.015 

β13 [Bipyr]-Fe3+ -1.79 0.664 7.21 0.023 3.77 

β23 [PO4
3-]-Fe3+ -2.38 0.664 12.79 5.05E-3 6.68 

β11 [Bipyr]2 -2.05 0.495 17.07 2.04E-3 8.92 

β22 [PO4
3-]2 0.65 0.495 1.73 0.22 0.91 

β33 [Fe3+]2 -1.15 0.495 5.35 0.0432 2.79 
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Table 1.7: ANOVA for the response surface generated by the quadratic model fitted to 

the data for Fe-(Phen)3 complex formation. 

 

 

Source Squares df Square Value Prob > F 

 
Model 267.4487 9 29.71652 9.036442 0.000964 significant 

Residual 32.8852 10 3.28852 

   
Lack of Fit 26.63062 5 5.326124 4.257778 0.068902 not significant 

Pure Error 6.254582 5 1.250916 

   
Cor Total 300.3339 19 

    

       
Std. Dev. 1.813428 

 

R-Squared 0.890505 

  
Mean 24.49013 

 

Adj R-Squared 0.791959 

  
C.V. % 7.404728 

 

Pred R-Squared 0.291619 

  
PRESS 212.7509 

 

Adeq Precision 12.28123 
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Table 1.8: ANOVA for the response surface generated by the quadratic model fitted to 

the data for Fe-(bipyr)3 complex formation. 

 

 

Source Squares df Mean Square Value Prob > F 

 
Model 677.0533 9 75.22815 21.27165 2.22E-05 significant 

Residual 35.36545 10 3.536545 

   
Lack of Fit 23.07626 5 4.615252 1.87777 0.252967 not significant 

Pure Error 12.28919 5 2.457837 

   
Cor Total 712.4188 19 

    

       
Std. Dev. 1.88057 

 

R-Squared 0.950359 

  
Mean 20.12113 

 

Adj R-Squared 0.905681 

  
C.V. % 9.346248 

 

Pred R-Squared 0.701957 

  
PRESS 212.3314 

 

Adeq Precision 16.46127 
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Table 1.9: Experimental conditions and the observed response for Ferrozine matrix. 

 Factor 1 Factor 2 Factor 3 Response Response RSD 

Run A: [Ferrozine] B: [PO4]
3-

total C: [Fe3+] [Fe-(Ferrozine)3] 

 (µM) (mM) (µM) (µM) (%) 

1 465.2 718.6 50.7 2.53E-06 6.7 

2 1609.8 186.4 199.3 2.41E-05 3.9 

3 1037.5 452.5 125.0 1.32E-05 1.3 

4 1037.5 452.5 125.0 1.17E-05 10.0 

5 1037.5 900.0 125.0 8.01E-06 4.1 

6 1037.5 452.5 125.0 1.18E-05 3.5 

7 1609.8 186.4 50.7 2.28E-05 8.9 

8 1037.5 452.5 250.0 1.29E-05 2.6 

9 1037.5 452.5 0.0 1.10E-05 3.0 

10 75.0 452.5 125.0 2.30E-06 51.3 

11 1609.8 718.6 199.3 8.08E-06 0.2 

12 1037.5 5.0 125.0 2.73E-05 9.9 

13 1037.5 452.5 125.0 1.26E-05 2.2 

14 2000.0 452.5 125.0 1.86E-05 3.2 

15 1609.8 718.6 50.7 1.42E-05 17.5 

16 465.2 186.4 50.7 1.70E-05 1.9 

17 465.2 718.6 199.3 2.10E-06 15.7 

18 465.2 186.4 199.3 1.93E-05 4.5 

19 1037.5 452.5 125.0 1.18E-05 7.1 

20 1037.5 452.5 125.0 1.36E-05 2.4 
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Table 1.10: Estimates and hypothesis tests for the parameters of the quadratic model 

fitted to the log transformed data for the concentration of the Fe2+-(Ferrozine)3 complex 

formed. 

Parameter βx key 

Coefficient 

estimate 

Standard 

Error 

F 

Value 

p-value-Prob 

> F 

% 

impact 

β0 intercept 12.43 0.590 
   

β1 Ferrozine 4.08 0.392 108.66 1.08E-06 25.44 

β2 PO4
3- -6.51 0.392 275.97 1.31E-08 64.61 

β3 Fe3+ 0.016 0.392 0.0017 0.97 4E-4 

β12 Fz-[ PO4
3-] 0.87 0.512 3.00 0.11 0.70 

β13 Fz-Fe3+ -0.84 0.512 2.69 0.13 0.63 

β23 [PO4
3-]-Fe3+ -1.28 0.512 6.25 0.031 1.46 

β11 [Fz]2 -0.62 0.381 2.66 0.13 0.62 

β22 [PO4
3-]2 1.93 0.381 25.61 4.9E-4 6.00 

β33 [Fe3+]2 -0.11 0.381 8.0E-2 0.78 0.019 
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Table 1.11: ANOVA for the response surface generated by the quadratic model fitted to 

the log transformed data for Fe-(Ferrozine)3 complex formation. 

 

Source Squares df Square Value Prob > F 

 
Model 894.7972 9 47.4615 47.4615 5E-07 significant 

Residual 20.94791 10 2.094791 

   
Lack of Fit 17.40935 5 3.48187 4.919896 0.052568 not significant 

Pure Error 3.53856 5 0.707712 

   
Cor Total 915.7452 19 

    

       
Std. Dev. 1.447339 

 

R-Squared 0.977125 

  
Mean 13.24812 

 

Adj R-Squared 0.956537 

  
C.V. % 10.92486 

 

Pred R-Squared 0.845168 

  
PRESS 141.7871 

 

Adeq Precision 26.47896 
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Figure 1.1: Oxidation of Fe2+ in oxygen saturated solutions. Conditions: 25 mM HEPES 

buffer (pH 7.8). 
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Figure 1.2: First order oxidation of Fe2+ in oxygen saturated solutions. Conditions: 25 

mM HEPES buffer (pH 7.8). 
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Figure 1.3: Variation in the [Fe2+-ligand] complex formed with varying ligand 

concentration. Conditions: [phosphate]total = 100 mM (pH 7.8). 
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Figure 1.4: A representative plot showing the linear correlation of the colorimetric data 

for varying ligand concentrations. Conditions; [phosphate]total = 25 mM (pH 7.8). X= 

fraction of Fe2+ reacting with the ligand (L). 
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Figure 1.5: Variation in log kox vs total phopshate calculated using the Fe2+ complexation 

with 1,10-Phenanthroline (pH 7.8) 
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Figure 1.6: Variation in log kox vs total phosphate calculated using the Fe2+ complexation 

with 2,2’-Biyridine (pH 7.8) 
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Figure 1.7: Oxidation of Fe2+ in oxygen saturated solutions measured using ferrozine. 

Conditions: 25 mM HEPES buffer (pH 7.8). 
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Figure 1.8: First order oxidation of Fe2+ in oxygen saturated solutions measured using 

ferrozine. Conditions: 25 mM HEPES buffer (pH 7.8). 
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Figure 1.9: Variation in the [Fe2+-ferrozine3] complex formed with varying ligand 

concentration. Conditions: [phosphate]total = 100 mM (pH 7.8). 
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Figure 1.10: A representative plot showing the linear correlation of the colorimetric data 

for varying ligand (ferrozine) concentrations. Conditions; [phosphate]total = 5 mM (pH 

7.8). X= fraction of Fe2+ reacting with the ligand (L).  
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Figure 1.11: Variation in kox vs total phosphate calculated using the Fe2+ complexation 

with ferrozine (pH 7.8). 
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CHAPTER 2 

 

ASSESSMENT OF THE MAGNITUDE OF SHALLOW SEAWATER-POREWATER 

EXCHANGE IN SALT MARSH SYSTEMS 
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2.1 Abstract 

 Salt marshes are among key habitats in estuarine ecosystems marked with high 

capacity for processing particulate phases, high productivity and can be important sinks for 

carbon burial. Salt marsh sediments are thought to have low permeability, however, 

advective flow mediated by plant roots and animal burrows contributes to seawater-

porewater exchange. Circulation of water through shallow sediment can deliver oxygen to 

the typically anoxic sediment and promote oxygen mediated transformation of organic 

carbon and other reactive elements. Here we present the use of Ra as a tracer to assess the 

net advective flux through sediment as an integration of different contributors in a South 

Carolina salt marsh system. Sediment cores were collected during four field campaigns 

from contrasting locations in the marsh to evaluate the spatial variabilities between cores. 

In conjunction with the core collections, 224Ra activity in porewater and the water column 

during tidal cycles were also measured. The calculated fluxes varied depending on the 

physical characteristics of the cores with higher flow rates reported in cores collected at 

sites with high grass and burrow density. The high fluxes support coastal marsh systems’ 

ability to act as both reactors and reservoirs for particulate and dissolved organic carbon as 

they transit between terrestrial and marine systems.  

2.2 Introduction 

Estuarine systems are transition zones between terrestrial/riverine systems and the 

oceans that play a vital role in processing organic carbon. Their capacity to act as global 

carbon sinks have been widely documented.53-61  Many studies also propose the possibility 

of estuarine waters being sources of CO2 to the atmosphere, significant enough to nearly 
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counterbalance the CO2 sink in continental- shelves.56-62,63 This would suggest that most of 

the terrestrially driven organic carbon undergoes microbial respiration during the transit 

from land to ocean. However, decomposition studies have shown only 10-50% of riverine 

organic carbon is processed in estuaries.56,64-66 Following this discrepancy, it has been 

suggested that the CO2 loss from estuaries largely represent the microbial decomposition 

of organic carbon produced in coastal marsh systems whereas most riverine carbon 

bypasses the estuarine zone due to their short transit times.67-69 This has highlighted the 

importance of differentiating between estuarine systems that receive substantial river 

discharge and those that receive minimal freshwater inputs when estimating carbon fluxes 

and budgets in coastal zones.69-71  

The exchange and decomposition of organic rich phases and low carbon burial is 

predicted in permeable marine sands due to the advective supply of oxygenated water.72-74 

In contrast, salt marsh sediments are fine-grained and thought to be oxygen limited 

resulting in high particulate trapping and high carbon burial.75-76 This assumed low 

permeability is thought to limit the exchange of pore waters with surface waters and the 

transformation of particulate species in these muddy marsh systems. However, recent 

studies suggest that the advective flow in these systems may have been underestimated in 

their ability to transform terrestrial carbon and nutrients at the land-ocean interface.76  

Despite the low permeability, tracer studies indicate the water exchange in 

saltmarsh systems are higher than expected.77 Studies predict high hydraulic conductivities 

that do not directly correlate with the sediment permeability in saltmarsh systems.77,78 

Studies of nutrient supply to marsh grasses suggest that the grasses contribute to particle 

settling and their root system can facilitate advective flow. Vertical and horizontal 
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advective flow in the subsurface sediments around the root zone supports water and 

nutrient circulation at higher rates than would be predicted based on sediment permeability 

alone.79-81 These results suggest that other factors such as advective flow may also play a 

significant role in predicting the hydraulic conductivity in shallow marsh sediment.  

The ability of vegetated marsh systems to preferentially trap particulate phases 

indicates the potential value of these systems as bioreactors, as has been proposed for more 

permeable sediment systems.72,73 Variations in the grass canopy morphologies influence 

flow dynamics, particle advection and settling. Several studies have documented the 

reduction of water velocity and the subsequent promotion of particle retention by grass 

canopies of several Spartina species in coastal marsh systems.82-86 In addition to plants, 

burrowing activities of benthic macrofaunal organisms can enhance solute exchange fluxes 

across sediment-water interface where burrows act as passive sediment traps.87-90 The 

trapping of organic matter by marsh grass canopies and benthic burrowing activities can 

have a critical impact on the carbon and nutrient mass balance in salt marsh systems.91,92 

Thus, factors that affect the available oxidants and the associated rate of regeneration of 

particle phases play a critical role in the net burial of particle associated phases. Organic 

particles get deposited on the oxic sediment surface first undergo aerobic degradation and 

are subsequently buried in anoxic layers where anaerobic degradation takes place. Due to 

the less labile nature of partially degraded organic matter buried in anoxic sediment, 

anaerobic decomposition is relatively slower.93-95 Thus, the nature of the organic material 

plays a role in deciding whether aerobic or anaerobic pathways have the larger impact on 

the decomposition of organic matter in a system. Recalcitrant organic matter can resist 

anaerobic degradation, enhancing the carbon preservation in systems with higher amounts 
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of refractory carbon. High vertical transport rates can also increase the deposition flux 

reducing the aerobic decomposition in the upper layers. Overall, the relationships between 

flow, particle deposition and carbon turnover support a system adapted for nutrient 

recycling which suggest the potential significance of advective exchange of electron 

acceptors that drive particle transformation.91,96-98   

Radium isotopes are widely used as tracers for investigating oceanographic 

processes and chemical fluxes to the ocean.77,99-104 The four isotopes of Ra; 224Ra, 223Ra, 

228Ra and 226Ra have half-lives ranging from 3.6 days to 1600 years. These broad variations 

in half-lives make Ra isotopes excellent tracers to study processes that take place over 

multiple spatial and temporal scales. The short-lived 223Ra and 224Ra (half-lives of 11.4 and 

3.66 days respectively) are useful in studying processes on time scales of several days to 

weeks. 100,105-110   

Based on the delayed coincidence counting system developed by Moore and 

Arnold,111 Cai et.al. developed an approach for using the 228Th/224Ra disequilibrium as an 

indicator of advective water movement in river sediment.112-115 The method uses the 

relatively higher mobility of 224Ra in pore water compared to the 228Th parent to estimate 

the loss of the daughter due to pore water exchange. In seawater, 224Ra is produced via the 

alpha decay of its parent, 228Th. 228Th is highly particle reactive and has strong affinity to 

remain bound to sediment particulate phases. In contrast, the 224Ra daughter has drastically 

different geochemical characteristics dependent on the ionic strength. While it is strongly 

particle bound in freshwater, as the concentration of other alkaline earth elements Ca2+ and 

Mg2+ increases down the estuary, 224Ra is desorbed from the particle surface. Therefore, if 

seawater or brackish water flows through sediment, 224Ra can be mobilized and migrate 
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across the sediment-water interface to overlying water creating a disequilibrium between 

224Ra and 228Th.  

In this chapter, water column and pore water 224Ra activity as well as 224Ra/228Th 

sediment disequilibrium measured from different sites in the Folly Beach marsh system to 

verify that surface marsh sediments are subject to advective flow are presented. Further, 

the magnitude of that flow was measured as a function of vegetation and burrow density. 

The overall goal of this work was to test the applicability of the disequilibrium between 

sediment bound 228Th and its daughter 224Ra to obtain an integrated result of the multiple 

factors that contribute to the advective flow in the marsh system. Two sampling campaigns 

were arranged before and aftermath of Hurricane Irma to investigate the impact of the storm 

on the hydrodynamics of the marsh system.  

2.3 Experimental Methods 

Sampling Sites 

The sediment core samples and water samples were collected at different sites in 

the Folly creek watershed in Folly Beach, South Carolina during five field campaigns in 

2017 (March, May, July and September). The locations were selected to minimize 

contributions from rivers and groundwater inputs, except for the near surface circulation 

through permeable marsh sediment. Permeable layers of sand and/or shell hash present at 

the sites can support rapid horizontal flow of water in and out of the upper 50 cm of the 

marsh sediment near the creek edge. The saline water inputs to the Folly Creek watershed are 

provided by the Folly River, Folly Creek, the intercoastal waterway and other branching creeks 

with minimal freshwater inputs except for local precipitation. The site locations were selected 
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specifically to minimize contributions to the system from rivers or groundwater inputs other 

than the near surface circulation through permeable marsh sediment. The watershed shares an 

inlet with the Stono River watershed, a tidal channel in Southeast South Carolina. The main 

land formation is the barrier island of Folly Beach, on the southeastern side of the watershed.     

Site A is a marsh edge location with a dock and a floating platform providing marsh 

and creek access while site B is a low energy site in the center of the marsh (Figure 2.1). 

Sampling in September coincided with a major storm event; hurricane Irma, which made 

landfall on the US East coast on September 10th, 2017 resulting in heavy rainfall and a 

surge in wave action in the sampling area. Sampling sessions were carried out before and 

after the hurricane (September 7th and 14th) to assess the impact of the storm on the 

hydraulic dynamics of the salt marsh system.   

Pore Water and Creek Water Collection and Analysis 

 Creek water samples were collected from site A at different time points of a tidal 

cycle during trips in May and September. During the May campaign two additional 

samples were collected at Folly River Boat Ramp approximately 2 miles from site A and a 

seawater sample near the Folly Beach Pier. Two water samples, at low and high tides were 

collected in July. The samples were collected to 20 L carboys and filtered through columns 

containing acrylic fiber coated with MnO2 (Mn fibers). The MnO2 serves to adsorb the 

dissolved Ra in the water samples. Low tide samples with high particulate loads were set 

aside for particles to settle before filtration. Upon bringing the samples to the laboratory, 

the columns containing the Mn fibers were rinsed, partially air dried to remove excess 

water until no further droplets of water emerged out of the bottom of the column. 

Subsequently, the activities of 223Ra and 224Ra were measured using a delayed coincidence 
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counting system (RaDeCC).111, 115,116 This system monitors the alpha decays of the short-

lived Rn daughters of 223Ra and 224Ra. Samples were counted within 18 hours to minimize 

counting errors; typical yields were 800-1000 counts for 220Rn (the daughter of 224Ra). 

After the initial counting, the Mn fiber samples were aged for 3-4 weeks and measured 

again to determine 228Th and correct for 224Ra. Before counting, the weight of the Mn fiber 

samples were adjusted to match the weights of the first counting by adding water. Pore 

water samples collected on a falling tide and were coincident with the sediment core 

sampling points during May and September trips. The processing and analysis were similar 

to the creek water samples.  

Sediment Core Collection and Analysis 

 Two sediment core samples from sites A and B were collected during the March 

trip. In May, two samples were collected from two separate locations at site A.  The first 

sampling point was located on the marsh edge off the dock while the second point was 

more towards the center of the marsh approximately 30 m from the first sampling point. 

Both locations were populated with Spartina alterniflora grass. Both cores from September 

7th trip were from the marsh edge location at site A one was collected from a spot previously 

sampled and contained recently deposited sediment (and no plant roots or obvious burrows) 

the second core was collected within 10-20 cm adjacent to living marsh grass. The first 

core location for September 14th was the near those collected in May and September 7th. 

This was treated as a reference sample for comparing pre-and post-hurricane data. The 

second location was approximately 20 m from the first location, adjacent to a small creek 

with no marsh grass visible in the surrounding area.  The sampling site following the 

hurricane had lost a great deal of the grass canopy and was covered with a thick mat (as 
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much as a half meter) of marsh grass that had been uprooted and later deposited by the 

storm.  

The cores were within 25-30 cm in length and processed immediately after bringing 

to the laboratory. The cores were processed similar to the method developed by Cai. 

et.al.112 Each core was cut into 4-5 cm sections, transferred to a Teflon beaker. To each of 

the sediment section, 150 mL of 18MΩ water was added to form a slurry. This was 

sonicated to 15-20 minutes. The pH of the slurry was adjusted to pH 9 by dropwise addition 

of NH4OH. Afterwards, 1.0 mL of KMnO4 (3.0 gL-1) and 1.0 mL of MnCl2 (8.0 g MnCl2. 

4H2O L-1) were added to form a suspension of MnO2. Subsequently, the slurry was filtered 

onto a 142 mm GF/F filter. This was then transferred into a modified sample chamber and 

counted for 224Ra activities using RaDeCC. Similar to the water samples, the sediment 

samples were aged for 3-4 weeks, weights adjusted and measured again to determine 228Th 

and correct for 224Ra. The relative errors of final 224Ra activities were less than 10%. Within 

the counting period, the number of counts for 223Ra was very low, resulting in higher errors 

associated with 223Ra activities ( ̴ 25%). Due to this high uncertainty, the flow rate 

estimations in this study were based only on 224Ra activities.  

2.4 Results  

The 224Ra concentrations in water samples collected from site A in May showed 

significant variation within the tidal cycle. At low tide, the 224Ra concentration was 

7.6(±0.3) dpm/L. With rising tide, the concentrations fell to 2.3 – 3.0 dpm/L and reached 

1.9(±0.1) dpm/L at high tide. As the tide fell, the concentration remained fairly low at 

1.8(±0.1) dpm/L to finally increase to 8.0(±0.4) dpm/L at next low tide (Figure 2.2). The 

two water samples from the boat ramp at rising and falling tide were 1.7(±0.3) and 
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0.3(±0.01) dpm/L respectively. The concentration of the seawater sample collected near 

the Folly Beach Pier at rising tide was 0.5(±0.02) dpm/L. Pore water from site A had a 

224Ra concentration of 10.4(±0.4) dpm/L. The high tide and low tide water samples from 

Site A in July had 224Ra levels of 1.8(±0.1) and 5.5(±0.1) dpm/L respectively. The samples 

collected during the September 7th trip recorded 224Ra concentrations of 5.6(±0.2) and 

6.9(±0.2) dpm/L for the low tide and pore water samples respectively. The 224Ra 

concentrations water samples collected during a tidal cycle in September 14th trip followed 

a trend similar to the samples collected in May. During falling tide, the concentration was 

1.5(±0.1) dpm/L and increased to 4.7(±0.2) at low tide. As the tide rose the concentration 

fell back to 2.0(±0.1) dpm/L and further decreased to 1.7(±0.1) at high tide (Figure 2.2). 

Salinities recorded for the water samples during the tidal cycle ranged between 26.8 – 28.7 

ppt, observed at low and high tides respectively. The pore water 224Ra activity collected 

from the reference core sampling point was 6.7(±0.2) dpm/L. The salinity was 27.6 ppt. At 

the second core site (non-vegetated), the pore water 224Ra activity was 8.5(±0.2) dpm/L 

and the salinity was also relatively higher at 29.7 ppt.  

Sediment 228Th activities for all cores at all depth intervals varied between 

0.80(±0.03) – 0.39(±0.02) dpm/g, except for the 1-4 cm interval for marsh edge core 

collected in March, which had an activity of 1.06(±0.03) dpm/g. Generally, the higher 

activities were observed in the upper sediment (0-5 cm depth), with activities decreasing 

with depth. However, this trend was not consistent throughout the cores, as several showed 

erratic variations in 228Th activities in the middle portion (5-20 cm depth) of the cores.  

The net pore water exchange, as export of 224Ra activity in upper sediment, was 

estimated by integrating the difference between the activity of 224Ra at the time of sample 
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collection and the activity of 224Ra once the sample was allowed to come to secular 

equilibrium with the surface bound parent, 228Th. In this case the disequilibrium was 

determined over the upper 0-25 cm of the sediment column. The sediment-bound 224Ra and 

228Th inventories in the upper 25 cm of the sediment column were considered to be at 

steady state with respect to particulate inputs or losses on the timescale of several 224Ra 

half-lives (t1/2 = 3.6 days). Thus, within the uncertainty of the measurements, 

disequilibrium reflects the exchange of the pore water inventory of 224Ra. The steady-state 

assumption allows the calculation of the loss of 224Ra activity due to export as Eq. (2.1) 

below (after Cai et al. 2014).113 

The rate of 224Ra export (as activity) was estimated by: 

FRa = λ224Ra(A228Th-A224Ra)     Eq 2.1 

Where FRa is the loss of sediment 224Ra activity, in excess of decay, expressed as 

pore water 224Ra export in disintegrations per minute (dpm) of 224Ra cm-2 day-1. λ224Ra is 

the decay constant for 224Ra (0.189 day-1), and A228Th and A224Ra are the activities of 228Th 

and 224Ra in units of dpm per gram of sediment.  

The export of 224Ra activity (FRa) as pore water flux was estimated using pore water 

224Ra activities calculated for the pore water samples collected on each sampling trip (Table 

2.1). These calculations yielded a pore water exchange rate of 118(±1) Lm-2day-1 for the 

core from site A in March (Figure 2.3). For the site B core, the exchange rate was 102(±1) 

Lm-2day-1. A burrow was present between 10-15 cm depth of this core, which is reflected 

by the significant deficit observed in that depth range (Figure 2.4).  The marsh edge core 

from May yielded a pore water exchange rate of 125(±10) Lm-2day-1 (Figure 2.5). 

Similarly, the core collected towards the center of the marsh resulted in 147(±12) Lm-2day-
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1 (Figure 2.6). A significant difference was observed between the pore water exchange rates 

for the two cores collected during the September 7th trip before hurricane Irma made 

landfall. The two cores yielded exchange rates of 69(±17) and 128(±16) Lm-2day-1 (Figures 

2.7 and 2.8). Here, the sediment core with the lower exchange rate was sampled from a 

previous sampling point that has refilled since the earlier collection. This was specifically 

chosen to evaluate the advection without any root or burrow influence. The higher 

exchange rate resulted from a core obtained from the rhizosphere of the vegetated portion 

of the marsh edge that has not disturbed during previous sampling. The reference core from 

the post hurricane trip on September 14th, again from the rhizosphere but not disturbed 

during previous sampling, yielded a pore water exchange rate of 86(±20) Lm-2day-1 (Figure 

2.9). The second core collected in a section of un-vegetated marsh edge had a similar 

exchange rate of 74(±17) Lm-2day-1. This core collected near a creek had a high-water 

content and a burrow was present within 10-20 cm of the core, which affected the observed 

disequilibrium at both 12.5 cm and 17.5 cm sample intervals (Figure 2.10).  

2.5 Discussion 

 During the two tidal cycles, the highest creek water 224Ra activities were measured 

for low tide water samples. In sediments, 224Ra is continuously produced by its insoluble 

228Th parent. As saline water circulates through sediment, Ra bound to sediment surfaces 

readily undergo desorption, increasing the 224Ra concentration in exchanging water and is 

observed as enrichment in the creek water. During low tide, the circulating seawater is 

drawn out of the marsh sediment. The resultant compression of the marsh sediment during 

low tide could be observed as the extensive cracking that appeared on the sediment surface. 

Similarly, as saline water flush through the marsh sediment, 224Ra is mixed into the water 
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flux leading to elevated 224Ra activities in pore water. This was observed in the dissimilar 

224Ra activities of the porewater samples from September 14. The high salinity porewater 

sample had a higher 224Ra activity compared to the low salinity sample. This is consistent 

with the desorption of Ra from particle phases as saline water is flushed through the marsh 

sediment increasing the porewater 224Ra level. Since the riverine freshwater inputs to the 

sampling sites are minimal, the Ra sources include Ra released from the marsh sediment 

and that advected into the salt marsh system by groundwater. The difference between the 

224Ra activity in the open seawater sample collected at the pier and the low tide water 

samples represent the Ra input into the water column from circulation through sediments 

in landward sections of the marsh.  

Comparatively higher 228Th activities observed in surface sediment are consistent 

with 228Th being supplied via scavenging in the overlying water column by suspended 

particles that subsequently settle on the surface. The 224Ra deficit observed throughout the 

lengths of the cores suggest that advective flow of water is supported in the upper  ̴ 30cm 

of shallow marsh sediment.  

The pore water exchange rates for the cores collected in March were similar at both 

sites. The presence of a burrow in the second core facilitated higher water flow as evident 

by the higher 228Th/224Ra disequilibrium observed in the corresponding depth interval.  

The two sampling locations in late Spring (May) were densely populated with 

cordgrass (Spartina alterniflora) and recorded the highest observed flux through the marsh 

sediment. The calculated advective flows in these cores were potentially impacted by the 

presence of cordgrass canopies. One possible mechanism for this higher than expected 

advective flow maybe associated with the compressibility of the sediments due to changes 
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in cordgrass root volume.  A study by Sundby on a similar marsh grass system reported 

that during summer the root biomass comprises around 25% of the dry weight of the total 

mass up to 20 cm depth.117 Sediment volume typically increases with the additions of root 

and rhizome tissues. Grass roots contain intercellular gas filled spaces that can account up 

to 60% of the total root volume. During tidal inundation, the partial pressure of oxygen 

within the roots have been found to vary within 20-65% in order to facilitate underwater 

gas exchange.118, 119 As a result, the compressibility of roots within the marsh sediment can 

bring about a substantial volume change. Thereby, a greater flow of water can be supported 

by the sediment surrounding the grass root system. While the root dynamics may not be 

the sole factor in deciding the advective flow, it can play a significant role in these systems.  

The core with the lower porewater exchange, collected in the pre-hurricane trip was 

from a previous sampling point that had since trapped the eroding sediment. No burrows 

or roots were observed within the core. The newly deposited sediment appeared to be 

unaffected by the neighboring grass root network. Thus, this core was considered a low-

end estimation for the porewater exchange rate in the marsh system. The observed flux was 

nearly half that from the second core, sampled from the same location but from an 

undisturbed point with plenty of cordgrass in the surrounding. This second sample with a 

128 Lm-2day-1 rate was on par with the grass populated core samples collected in May.  

Following Hurricane Irma which made landfall on Florida Keys on September 10th, 

Charleston, SC received 14 cm of rainfall on September 11th. This is equivalent to about 

90% of the average monthly rainfall for the entire month. This also resulted in a wave 

action reaching up to  ̴ 1m in height. In the aftermath, grass was observed to have been 

uprooted from the marsh system and was piled up along the marsh bank and nearby streets 
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of the sampling site. Many boardwalks and docks were destroyed and scattered along the 

marsh.  Wave action would have resuspended sediment as well as uprooting marsh grass 

out. The resultant disruption of the sediment structure, particularly in the rhizosphere may 

have reduced the volume of root network and burrow structures. This in turn may account 

for reduction of net exchange between the marsh sediments and surrounding creek water 

as indicated by lower flow rates measured in the cores collected on September 14th. Water 

fluxes comparable to those calculated after the hurricane in this study was reported by Dias 

et.al. for a similar location in the Folly marsh system in December.81 Therefore, this 

reduction in root mass can be considered to be similar to winter conditions when marsh 

grass productivity decrease resulting in a decline in root biomass.    

The water fluxes calculated in this study are comparable to the groundwater 

exchange rate of 100 Lm-2d-1 reported by Rama and Moore, for the North Inlet salt marsh 

in South Carolina.120 Both of these exchange rates calculated in the summer are higher by 

a factor of 3-4 than the average annual discharge calculated by Krest et.al. for the same salt 

marsh system.78 Their exchange range of 20-40 Lm-2d-1 is more on par with the low-end 

advection flow estimated in this study and the exchange rates calculated by Dias et.al. 

during the winter.81  

The large volume flux through muddy marsh sediment is an indication of 

heightened transport of oxygen to particulate phases and anoxic porewaters rich in reduced 

species. This sets the stage for a plethora of redox transformations to occur within the upper 

layers of the marsh sediment. Thereby, these highly productive systems have the potential 

to support sizable organic carbon degradation which consequently affect the carbon 

preservation and nutrient flow from salt marsh systems to the coastal oceans.  



www.manaraa.com

54 

 

2.6 Conclusion 

 228Th/2224Ra disequilibrium technique was used to assess the porewater exchange 

rate in a South Carolina salt marsh system. Radium deficits were observed throughout the 

lengths of the cores ( ̴ 30 cm) collected from various marsh locations implying substantial 

advective flow that flushes the marsh system with saline water. The fluxes represent the 

net flow of water through marsh sediment as a collection of different factors that contribute 

to dissimilar extents. These factors include morphological variations of the sediment 

including pore spaces and the presence of shell hash layers. Marsh grass and to a lesser 

extent burrows were seen to facilitate the advection flow. The flow volumes measured after 

the storm event suggest that the wave action induced by the storm surge has likely changed 

the sediment morphology hindering the advection pathways associated with grass roots and 

burrows. These results highlight that despite the low permeability, shallow marsh sediment 

has the potential to act as both a trap and a bioreactor for particulate and dissolved organic 

matter prior to the export to continental shelves. Therefore, assessing the flow dynamics of 

salt marshes which can significantly alter the decomposition patterns in these land-ocean 

transit zones is pivotal in making estimations of the carbon export from coastal systems 

and the resultant impact on global nutrient cycles.   
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Table 2.1: Porewater exchange rates calculated using the sediment core samples 

Sampling Month-Year Location Porewater Exchange Rate 

Lm-2day-1 

March 2017 

 

Site A 118(±1) 

March 2017 

 

Site B 102(±1) 

May 2017 

 

Site A – marsh edge 125(±10) 

May 2017 Site A – towards the center 

of the marsh 

147(±12) 

September 2017 

pre-hurricane 

Site A – previously 

sampled location 

69(±17) 

September 2017 

pre-hurricane 

Site A – undisturbed 

location 

128(±16) 

September 2017 

post-hurricane 

Site A – reference core 

from marsh edge 

86(±20) 

September 2017 

post-hurricane 

Site A – grassless location 

adjacent to a creek 

74(±17) 
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Figure 2.1 The sampling sites in the Folly creek watershed.   
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Figure 2.2 Variation in 224Ra concentration in water within a tidal cycle in May and 

September at site A. 
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Figure 2.3 224Ra/228Th disequilibrium measured in a sediment core from site A in March.  
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Figure 2.4 224Ra/228Th disequilibrium measured in a sediment core from site B in March.  
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Figure 2.5 224Ra/228Th disequilibrium measured in a sediment core from a marsh edge 

location at site A in May. 
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Figure 2.6 224Ra/228Th disequilibrium measured in a sediment core located towards the 

center of the marsh at site A in May.  
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Figure 2.7 224Ra/228Th disequilibrium measured in a sediment core from site A in 

September (pre-hurricane). The sampling point was a previously sampled point that has 

been since filled. 
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Figure 2.8 224Ra/228Th disequilibrium measured in a sediment core from an undisturbed 

location at site A in September (pre-hurricane). 
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Figure 2.9 224Ra/228Th disequilibrium measured in a sediment core (reference core) from 

a marsh edge location at site A in September (post-hurricane). 
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Figure 2.10 224Ra/228Th disequilibrium measured in a sediment core from a grassless 

location adjacent to a creek at site A in September (post-hurricane). 
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CHAPTER 3 

 
PRODUCTION OF REACTIVE OXYGEN SPECIES IN THE RHIZOSPHERE OF A 

SPARTINA-DOMINATED SALT MARSH SYSTEM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
81Dias, D.M.C., Copeland, J.M., Milliken, C.L., Shi, X., Ferry, J.L. and Shaw, T.J. 

(2016) Production of reactive oxygen species in the rhizophere of a Spartina-dominated 

salt marsh system. Aquat Geochem. 22(5-6), 573-591. Partially reproduced with 

permission from Springer. Copyright © 2016, Springer. 
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3.1 Abstract  

This chapter reports the presence of a metastable mixture of Fe(II), O2, superoxide 

and hydrogen peroxide in sediment pore water in organic carbon-rich sediments in Spartina 

alterniflora dominated salt marsh systems. Field measurements at two different estuarine 

sites in South Carolina (one heavily urbanized and a protected research reserve) showed a 

broad region of reactive oxygen species (ROS) production more than 15 cm below the 

sediment surface within and immediately adjacent to the rhizospheres of S. alterniflora. 

Dissolved Fe(II) was positively correlated with hydrogen peroxide indicating a possible 

abiotic pathway to ROS production (r2 = 0.94). The null hypothesis was tested that Fe(II) 

inventories were maintained by protective ligands and thus unreactive with respect to O2 

consumption and ROS production. The addition of an Fe-binding ligand, DTPA, resulted 

in rapid decline of ROS in pore water, indicating that Fe(II) was labile. The half-life of 

superoxide under the measured solution conditions was calculated and found to be less than 

a second. The combination of high lability and persistent ROS was interpreted to indicate 

a high rate of Fe(II) and O2 supply to the pore water. The estimated pore water exchange 

of 54 L m-2 day-1 was significant but could not support the measured production of ROS 

alone, the direct exchange of O2 from the S. alterniflora root system may have contributed 

significantly to the ROS production in the sediments. 

3.2 Introduction 

Salt marshes and estuaries cover an area of approximately 2.2 x 106 km2 globally121 

and are important regions for both burial and remineralization of organic carbon.122,123 

Marsh and estuarine sediments receive organic carbon from sources that include terrestrial, 
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marine inputs and autochthonous sources.124,125 In these systems, the presence of marsh 

grass can act as a trap for particulate phases often focusing carbon deposition at or near the 

river or creek edge.126 Carbon input frequently occurs at higher rates than its microbial 

oxidation, allowing these systems to act as sinks for organic carbon through physical burial 

of organic particulates. Carbon burial restricts benthic microbes from easy access to oxygen 

and the mass flow restriction typically results in the development of shallow redox zones 

in sediments according to the diagenetic series.127-131 This physical isolation results in the 

sedimentary accumulation of materials that are thermodynamically unstable with respect 

to oxygen but kinetically restricted from reacting with it by mass transport limitations, 

including Fe(II), Mn(II), and HS-.93,96,132,133 The kinetic restrictions are a result of physical 

isolation and in many cases the spin forbidden nature of some of the molecular 

processes.134-137 In sediments having low permeability, concentration gradients for the 

dissolved products of diagenesis reach a spatial equilibrium based on the relative rates of 

microbial carbon utilization and diffusion of oxygen into the system from the water 

column.  

The effective permeability of sediments is significantly increased when flora and 

fauna introduce mechanisms that enable active and passive mixing of oxygen-containing 

gases or liquids with buried carbon reservoirs. For example, cordgrass Spartina species 

have aerenchyma; spongy vertical structures that enable direct gas transport between aerial 

portions of the plant and the roots.119, 138-143 Estuarine fauna may also contribute oxygen to 

sediments through burrowing activity. Solute transport in marine sediment associated with 

biogenic irrigation has been well documented. 91,144,145 Conditions that lead to rapid gas 

exchange between roots and aerial portions of the plant can result in the development of 
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sharply bounded concentration gradients in redox active species in the sediment around the 

grass root network.146-148 This oxygen transport and subsequent radial release coupled with 

the availability of reduced species in pore water can support the oxidation of redox active 

species, including the direct oxidation of Fe(II) and the Fe(III) catalyzed oxidation of HS- 

and some organic materials. In this manner, the presence of macrofaunal burrows and an 

extensive grass root system create a three-dimensional network of rapidly oscillating redox 

gradients in the upper layers of sediment in a salt marsh. This region has the potential to 

act as a site for oxidation of transition metals like Fe(II) to Fe(III) followed by their rapid 

microbial or abiotic reduction to Fe(II) when night or high tide restores the anoxic 

condition.149-151  

The oxidation of Fe(II) by O2 in aqueous solution is stoichiometric with respect to 

the production of Fe(III) and superoxide152 (Figure 3.1). Superoxide is the conjugate base 

of the hydroperoxyl radical, a weak acid with a pKa of 4.83.50 Superoxide may react with 

several different forms of organic matter, or it may react with additional Fe(II) or undergo 

dismutation; either of the latter two pathways are efficient sources of hydrogen peroxide. 

The kinetics of the direct reaction between hydrogen peroxide and organic matter are 

generally slow, but it is capable of rapidly reacting with Fe(II) to yield Fe(III), hydroxyl 

radical and hydroxide ion. This manifold of reactions is expected at sites where oxygen-

limited, Fe(II)-containing waters mix with oxygenated waters. Since the production of ROS 

is dependent on the Fe and oxygen dynamics of the system, the ROS profile is expected to 

reflect the iron and oxygen variations. Enhanced circulation of seawater through marsh 

sediment and/or direct gas exchange through roots should promote ROS production in pore 

water rich in reduced iron. Here we present the results from field studies conducted in the 
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South Carolina coastal marsh to test the hypothesis that the naturally occurring injection of 

DO into reducing sediment in the rhizosphere supports abiotic production of ROS. 

3.3 Experimental Methods 

Sampling Sites 

The field studies were conducted in the highly-urbanized Folly creek watershed in 

Folly Beach, South Carolina (August 2015, March 2016 and May 2016) and at the 

protected North Inlet watershed in Georgetown, South Carolina (September 2015). Sample 

sites were at creek edges in the lower marsh where sediments were alternately inundated 

and exposed twice daily with the diurnal tides (Figures 3.2 and 3.3). Surface sediments 

remained saturated at low tide, but water continued to flow out of the creek banks after the 

sediment surface was exposed. Flow was observed along small channels in the creek bank, 

out of layers below the base of the plant roots and from burrows. At low tide, deep cracks 

appeared in the sediments but later closed as sediments were inundated with the rising tide. 

Samples were collected in the upper sediment column, well above the water table, 

precluding a deep groundwater source for the observed flow. Flora at both sites was 

dominated by Spartina alterniflora (marsh grass). Both sites have minimal input of fresh 

water from nearby rivers. Permeable layers of sand and/or shell hash were common at both 

sites and could support rapid horizontal flow of water in and out of the upper 50 cm of the 

marsh sediment. The Folly creek watershed is bounded entirely by saline water sources 

from the Folly River connection to the Ocean at the Stono River inlet to the East and South, 

the intercoastal waterway to the West, and Charleston harbor to the North. Fresh water 

inputs are primarily due to local precipitation leading to minimal variation in salinity during 

a tidal cycle. Similar to the Folly system, the Stono River receives little or no freshwater 
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input other than that generated by the runoff in the watershed.153 Salinities at the sample 

sites were fairly constant during each sampling period and ranged from low of 28 ppt in 

March with higher values ranging from 31 to 33 ppt in August. The total area of the 

watershed is 33 km2 with around 74% of the water cover consisting of bay/estuary and 

non-forested wetlands.153 On the southeastern side of the watershed, the barrier island of 

Folly beach is the main land formation. 

North Inlet is a tidally driven watershed located in Georgetown, South Carolina, 

about 80 km north of Charleston. The system is a saline and well mixed salt marsh of 

approximately 32 km2 with a salinity range of 23–24 PPT during the Fall sampling period. 

The eastern boundary at the North Inlet is formed by barrier islands. The water cover 

includes about 43% of forested wetlands and 29% of estuarine emergent wetland. The inlet 

has an open connection to the ocean that supports active exchange of water and particulates 

with the ocean.154 

Pore Water Sample Collection 

Pore water samples were collected from inundated sediments during both rising and 

falling tides, typically with from 10 to 40 cm of overlying water during collection. Figure 

3.6a provides a pictorial representation of how samples were collected in the rhizosphere, 

in burrows and in mud away from the plant stalk. Pore water samples were withdrawn with 

an acid washed syringe attached to a titanium push point sampler with silicone tubing. One 

sample was collected in a surface crack in the mud as it refilled on a rising tide (cracks had 

no water when they formed following exposure). Sediments remained saturated following 

exposure. However, capillary tension in the exposed sediments resulted in an apparent drop 

in porosity as evidenced by the appearance of deep cracks in surface sediments at low tide. 
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Pore water could not be extracted from exposed sediment using the push point sampler 

even immediately after exposure apparently due to the porosity change. Cracks appeared 

in the sediments within  ̴ 1 h of exposure and were attributed to capillary tension rather than 

evaporation due to the rapid formation of cracks coincident with low tide even during 

periods of very cold temperatures. Samples were collected at depths ranging from near 

surface to  ̴ 35 cm. The role of the Spartina rhizosphere was explored by varying sample 

points from adjacent to stems to a distance of 2 m. A small volume of pore water was 

collected and discarded to purge the line of any air bubbles to prevent the introduction of 

outside oxygen into the samples. Samples were filtered in line through Acrodisc 25-mm 

glass fiber filters (1 µm) before analysis for hydrogen peroxide, superoxide and iron. In 

line filters were flushed with pore water before data collection. The filtered samples were 

transferred to acid washed glass vials by slowly filling from bottom up to minimize the 

introduction of oxygen and were analyzed immediately following collection. Replicate 

oxygen measurements were made on the pore water sample that had the lowest measured 

oxygen. Measurements were made before sample filtering and again after filtering, splitting 

for analysis and preservation to evaluate a procedural blank for possible oxygen 

contamination during handling. The procedural blank was 5 µM, comparable to the 

measured oxygen concentration for the sample with the lowest oxygen concentration (4 

µM). 

Dissolved Oxygen (DO) 

A four-channel fiber optic oxygen meter (Pyroscience Firesting O2 FSO2-0x) 

coupled with bare fiber oxygen minisensors (OXB430) was used to make dissolved oxygen 

(DO) measurements in pore water samples for two of the Folly Beach sampling campaigns. 
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The sensor was calibrated using air saturated sea water (100% O2) and sea water flushed 

with nitrogen (0% O2). Sample vials were filled from the bottom and flushed with 

unfiltered groundwater immediately prior to analysis. 

Iron Analysis 

Fe(II) and Fe(III) were determined colorimetrically using the Ferrozine method.155 

The detection limit was determined to be 0.4 µM (as three times the standard deviation of 

the baseline measurement). The filtered pore water samples were added to vials pre-loaded 

with Ferrozine (1:1 volume), and absorbance measurements were taken immediately. 

Fe(III) analyses were carried out upon returning to the laboratory. 

Hydrogen Peroxide 

Hydrogen peroxide was measured by a modified acridinium ester 

chemiluminescence technique using a continuous flow instrument with a photomultiplier 

(PMT) detector (Waterville Analytical) after Cooper et al.156 Filtered sample and the 

reagents were continuously pumped through a flow cell and chemiluminescence resulting 

from the reaction of the hydroperoxyl anion and acridinium ester at pH 12 was monitored. 

The wavelength maximum for the chemiluminescence occurs  ̴ 470 nm, well away from 

NOM absorption bands. A detection limit of 60 nM was determined (as three times the 

standard deviation of the baseline measurement). The samples were mixed in line with 200 

mM diethylenetriaminepentaacetic acid (DTPA) prior to analysis to inhibit precipitation of 

Mg(OH)2 and render Fe species kinetically inaccessible to further redox reactions on the 

timescale of the measurement. Acridinium ester and a pH modifier were then added 

through sequential mixing tees to initiate the photoluminescence reaction when the sample 

entered the detector cell. The system was recalibrated for each sample by the method of 
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standard addition for the analysis to minimize any possible matrix effects. The system was 

also externally calibrated against hydrogen peroxide standards. Hydrogen peroxide 

standards used for both standard additions and external calibration were themselves 

periodically standardized based on the absorbance at 254 nm. A typical calibration curve 

is shown in Figure 3.4.  

Superoxide 

Superoxide was determined by a chemiluminescence technique based on the 

reaction between superoxide and 2-methyl-6-[p-methoxyphenyl]-3,7-dihydtoimidazo[1,2-

a]pyrazin-3-one (MCLA).157,158 The MCLA reagent was prepared immediately prior to use 

at 5 µM in 50 mM sodium acetate buffered at pH 6. Filtered pore water was pumped into 

a mixing tee where the transition metals were stabilized by reaction with a 200 mM DTPA 

solution immediately before superoxide concentration in each sample was determined by 

the method of standard additions. The detection limit was less than 0.1 nM (as three times 

the standard deviation of the baseline measurement). Superoxide standard solutions were 

prepared fresh by adding potassium superoxide to 0.01 M KOH and quantified using UV 

absorbance at 240 and 260 nm correcting for H2O2 present. A background correction was 

carried out to account for the background signal due to MCLA autoxidation (Hansard et al. 

2010). A representative calibration curve is shown in figure 3.5.  

3.4 Results 

DO, Fe(II), H2O2 and Superoxide in Sediment Pore Water 

Figure 3.6a, d shows the measured pore water constituents around the grass roots 

and sediment of the two field sites in 2015. Dissolved Fe(II) and H2O2 were measured in 
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August, and O2
.- was also measured for the September campaign. At both sampling sites, 

pore waters showed ROS (as H2O2) concentrations that reached levels greater than eight 

micromolar. The high concentration ROS samples occurred both in shallow and deep pore 

waters and were typically associated with higher levels of dissolved Fe(II), suggesting a 

possible relationship via Fe(II) oxidation (see Fig. 3.1). The measurement of DO was 

included the following year to explore this hypothesis. Figure 3.6b, c shows the variations 

in DO, Fe(II) and O2
.- concentrations around the grass roots in the Folly salt marsh 

measured during the two field campaigns in 2016. 

Hydrogen peroxide was also measured during both campaigns, but the detector 

used for H2O2 measurement was found to be leaking during the analysis in March; thus, 

those data were deemed unreliable. Surface water oxygen was also measured and was near 

saturation in March and ranged from  ̴ 70 to 100% oxygen saturated (167–245 µM) in May. 

The range in May reflected diurnal and/or tidal differences for the two sampling periods, 

rising tide during the late afternoon (219–245 µM), and falling tide after sunset (167–202 

µM). For the March 2016 pore water samples, the general trend was decreasing DO with 

increasing depth for samples collected along the plant stalk, but the DO was still near 50% 

saturation in the deepest sample (Fig. 3.6b). In contrast, the deep pore waters samples 

collected 5–10 cm away from the plant stalk were typically lower. Similar trends were 

observed in May 2016 for pore waters collected on both the falling and rising tides, but 

with overall lower concentrations of DO on the rising tide. The deepest samples collected 

5–15 cm away from the center of the plant stalk in May showed the lowest DO samples 

measured. Overall, there was a general trend of decreasing DO with depth (Figure 3.7). 

The DO measurement of 4 µM recorded for the 30 cm depth sample in May 2016 was 
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considered to be within the uncertainty of the sampling method due to the procedural blank. 

The Fe(II) distribution generally showed a negative correlation with DO (Fig. 3.8). This 

was especially true for May samples where high Fe(II) in the range of 39–70 µM were 

found in the near anoxic deep root system. Similarly, when DO was greater than 50% 

saturation, Fe(II) was near or below detection limit (dl = 1.8 µM). The relationship was 

expected as Fe(II) can undergo rapid oxidation in the presence of molecular oxygen. 

Compared to Folly creek samples in August and May, March 2016 samples contained less 

Fe(II), especially in the deeper root system. High Fe(II) samples with concentrations in the 

excess of 30 µM were all recorded at rising tide. During the May 2016 trip, pore water 

samples collected from similar depths at falling tide had comparatively lower Fe(II) than 

the rising tide samples. 

Collectively the superoxide concentrations varied between 2 and 32 nM (Figure 

3.6). Though there were no clear concentration gradients with depth (Figure 3.9), the 

highest superoxide concentrations were typically present in the deeper sediment. This was 

true for both September 2015 and May 2016 data sets (Fig. 3.6c, d). No clear relationship 

between the instantaneous concentrations of superoxide with Fe(II) or DO levels was 

observed. This lack of correlation was consistent with a system where the Fe(II) and 

oxygen levels were maintained by mass transport rather than serving as stoichiometric 

reservoirs for superoxide production. Higher levels of H2O2 were present at greater depths 

for the Folly marsh samples. The North Inlet samples extracted  ̴ 5 cm belowground had 

H2O2 levels exceeding 1 µM. The concentration of H2O2 correlated positively (r2 = 0.94) 

with the instantaneous concentration of Fe(II) (Figure 3.10). The positive slope of the 

relationship indicated that Fe(II) was (net) more important as a source of H2O2 than as a 
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sink. This correlation was constant regardless of the sampling depth and the relative 

location of marsh grass to the sampling site. 

 

3.5 Discussion  

The correlation between Fe(II) and H2O2 concentrations (Figure 3.10) was 

consistent with the non-photochemical pathway connecting Fe(II) oxidation and H2O2 

production depicted in Figure 3.1. The observed deficit in 224Ra compared to its parent in 

the sediment core indicated one mechanism for mass transport of DO into the root zone 

was via physical forcing of pore water exchange.77, 101,123,159-162 Sediment porosity appeared 

to decrease with falling tide as the marsh sediments came under capillary tension, and 

increase as the rising tide inundated sediments, consistent with pore collapse from surface 

tension and gravitational compression. The fluctuations observed in Fe(II) and ROS levels 

during rising and falling tides were consistent with compressible sediments. Thus, the 

redox state of the sediment column may have been governed by processes leading to 

oscillations in sediment porosity as well as varying exchange with and along roots and 

burrows. This process is presented conceptually in Fig. 3.11. The vertical exchange is 

shown to be facilitated by a high permeability layer of shell hash just below the root zone. 

These layers were observed at all sampling sites and are thought to facilitate water (and 

O2) exchange on both rising and falling tides. This conceptual model is supported by results 

presented by Dias et.al. showing the maximum in the 224Ra/228Th disequilibrium in the 

deepest core sections for samples at the Folly site.81  

An important DO source to the rhizosphere that should be independent of pore 

water exchange rates is O2 gas transport across the leaf surface and into root pore spaces. 
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Studies have shown that a portion of the transported oxygen can diffuse through the root 

wall to the surrounding sediment and dissolve in pore water.119, 138-140 The pore water 

samples collected from the upper 15 cm of sediment were more oxygenated compared to 

samples further down the root network (>25 cm), but the deep sediment zone (>25 cm) still 

contained oxygen. While a distinction is made for samples collected away from the center 

of the plant, the extent of the rhizosphere influence probably included these samples. The 

oxygen dispersion likely extended beyond the central plant stalk and the width of the redox 

zone covered a wider area around the fibrous root network. Relatively higher DO 

concentrations were recorded for water samples extracted in March compared to May. In 

March, temperatures were comparatively lower, and microbial activity is typically lower 

in cooler conditions.141-143 Another qualitative indicator of a supply of DO to the deep 

portions of the rhizosphere was visually observed during sediment core collection for 

measurement of 224Ra/228Th disequilibrium. Brown-/ orange-colored vertical channels 

interspersed with gray to black sediments were noted down the length of the core indicating 

the deep distribution Fe(III) rich zones in the rhizosphere in close proximity to reduced Fe 

phases. These brown/orange zones were presumably generated via oxidation of dissolved 

or particulate Fe(II) phases. The gray to black zones was assumed to be FeS phases 

generated as a result of microbial sulfate reduction in the presence of Fe phases. These 

observations suggest cycling between oxidized and reduced Fe phases as sediment redox 

conditions shift with tidal variations, a process consistent with the generation of ROS. The 

oxidation of FeS2 has been shown to generate ROS in laboratory experiments,163 and the 

oxidation sulfide in the presence of amorphous Fe phases shows similar results.20,21 The 

observed pore water conditions may reflect a metastable state during redox cycling. The 
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observed mixture of dissolved Fe(II), O2, superoxide and hydrogen peroxide reported in 

Figure 3.2 was thermodynamically unstable. Two possible explanations for the observed 

mixture were that (a) the mixture was thermodynamically unstable, but the Fe(II) was 

sequestered from redox chemistry by a stabilizing natural ligand, or (b) the mixture was 

kinetically reactive but external sources of reductive equivalents reduced Fe(III) quickly to 

regenerate Fe(II), resulting in apparent steady-state condition. This was tested by the 

injection of an anthropogenic stabilizing ligand, DTPA, into the pore water, part way 

through the pore water analysis. The addition of the DTPA resulted in the immediate loss 

of the ambient hydrogen peroxide signal and superoxide signal (Figure 3.12). The loss of 

the peroxide and superoxide signal was consistent with loss of production via Fe(II). Given 

evidence that hydrogen peroxide production proceeded via the reaction of Fe(II) with DO, 

the magnitude of DO transport into the sediments was a possible limiting factor for ROS 

production in sediments. 

Model Estimate of Superoxide and Hydrogen Peroxide Production Rates 

In a previous study,81 the advective exchange of pore water and overlying water 

constituents was carried out on a core collected adjacent to a Spartina stalk at the Folly 

site. Here, the sediment-bound inventories of 224Ra and 228Th in the upper 25 cm of the 

sediment column were considered to be at steady state with respect to particulate inputs or 

losses on the timescale of several 224Ra half-lives (t1/2 = 3.6 days). The steady-state 

assumption allows the calculation of the loss of 224Ra activity due to export as Eq. (3.1) 

below (after Cai et al. 2014).113 

The rate of 224Ra export (as activity) was estimated by: 

FRa=λ224Ra(A228Th-A224Ra)              Eq 3.1 
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Where FRa is the loss of sediment 224Ra activity, in excess of decay, expressed as 

pore water 224Ra export in disintegrations per minute (dpm) of 224Ra cm-2 day-1. λ224Ra is 

the decay constant for 224Ra (0.189 day-1), and A228Th and A224Ra are the activities of 228Th 

and 224Ra in units of dpm per gram of sediment. 

The export of 224Ra activity (FRa) as pore water flux was estimated using a pore water 224Ra 

activity of 10 dpm L-1. The FRa for the core yielded a pore water exchange rate in the upper 

25 cm of these sediments of  ̴  50 L m-2 day-1. This is equivalent to a 10% change in the 

porosity in upper sediment column between periods when the sediments are inundated 

versus exposed. The core collection was not coincident with the pore water sampling; but 

was used to estimate an upper limit on DO mass transport associated with overlying water 

exchange in the upper sediment column in this marsh system. 

The estimated water exchange rate of 54 L m-2 day-1 was used to estimate the 

maximum Fe(II) oxidation that could have occurred based on DO mass transfer. Assuming 

DO was at saturation ( ̴ 250 µM) in water circulated during exchange, a 1:1 stoichiometry 

for Fe(II) oxidation yielded a maximum estimate of 13.5 x 10-3 mol m-2 day-1. This estimate 

also implied a maximum associated ROS production (as superoxide) on the same order. 

This upper limit does not reflect the possible contribution from root/pore water O2 

exchange nor does it provide an estimate of the production of other ROS species. A simple 

ROS production model was generated based on the known reaction rates for Fe(II) with 

superoxide and Fe(II) with hydrogen peroxide. The assumption that superoxide and 

hydrogen peroxide production had achieved steady state in the system was also tested. The 

second-order rate constants for these reactions in the appropriate pH range are k1 = 1 x 107 

M-1 s-1 and kFenton = 2.34 x 104 M-1 s-1.11,4 The model was iteratively based on data obtained 
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from 60 measurements obtained at a frequency of 120 Hz. The duration was a function of 

the limited amount of pore water for each sample. Concentrations of Fe(II) required to 

maintain the observed steady-state superoxide levels for the measured time period (t) were 

calculated based on initial Fe(II) measurements and measured superoxide concentration at 

each time step.  

The assumption of steady state was tested by comparing predicted consumption for 

each time step based on ambient conditions versus observed changes in the superoxide 

inventory. The signal for superoxide typically showed minimal decay over the course of 

the measurement (e.g., Figure 3.12 prior to the addition of DTPA). Because the initial 

Fe(II) concentrations were in large excess compared to superoxide, the Fe(II)/O2
.- reaction 

was assumed to be pseudo first order with respect to Fe(II). Thus, the half-life was given 

by (Eq 3.2): 

thalf=
ln 2

k1[Fe2+]0

                                 Eq 3.2 

where [Fe2+]0 was the initial measured Fe(II) concentration and k1 = 1 x 107 M-1 s-1.4 The 

predicted half-lives for superoxide were on the order of the time step (0.004–0.035 s), 

confirming the necessity of a steady-state condition over the course of the measurement. 

The assumption of steady state allows the calculation of a minimum superoxide production 

over the measured time period. Samples where superoxide production would be oxygen 

limited ([Fe(II)] > [O2]) were not included in the model results. Superoxide dismutation 

was not included in the calculations, because the second-order reaction rate for the 

superoxide reaction with Fe(II) is  ̴ 125 times greater than the dismutation rates for the 

range of pH (7.8–8.1) measured in the overlying waters.11,164,165 The superoxide production 



www.manaraa.com

82 

 

necessary to balance the consumption due to reaction with ambient Fe(II) to form H2O2 is 

given by (Eq. 3.3): 

d[O2
.-
]

dt
= -

d[Fe(II)]

dt
=k1[Fe2+][O2

.-]        Eq 3.3 

where [Fe2+] was the initial measured Fe(II) concentration, [O2
.-] was the average measured 

superoxide concentration and k1 = 1 x 107 M-1s-1.11 The estimated production rates of 

superoxide in these pore waters ranged from  ̴ 10 to > 100 micromoles min-1. Assuming 

that the observed superoxide inventory was maintained by the oxidation of Fe(II) and the 

consumption of superoxide proceeded via reaction with Fe(II) to form H2O2, then Fe(II) 

should have been limiting over the timescale of the individual measurements. The data 

suggest that as DO was introduced into pore water containing reduced Fe(II), the 

subsequent oxidation of Fe(II) led to the abiotic, nonphotochemical generation of ROS. 

The data also suggested that Fe(II) was resupplied to the pore water via Fe(II)/Fe(III) 

cycling in this system. Organic carbon-rich marine sediments can be rich in reduced sulfur 

species produced by the anaerobic microbial reduction of sulfates. These reduced sulfur 

groups drive the rapid reduction of soluble Fe(III) complexes to Fe(II).12,13,166-168 Further 

Fe(II) can be generated through direct microbial reduction of Fe(III) complexes.169-172 

Within the Fe cycle, Fe(III) can undergo one electron reduction by superoxide to produce 

Fe(II).1,20,173 These processes collectively lead to the regeneration of Fe(II) in the marsh 

sediment water column and enable Fe species to act as catalysts for ROS generation. It was 

surprising that measurable DO persisted over the timescale of the pore water collection 

periods (> 1 h see Fig. 3.6). The possible role of root/pore water O2 exchange was 

considered in the context of DO mass transport during pore water exchange. The exchange 

of  ̴ 54 L m-2 day-1 from above would yield a DO mass transport of 13.5 mmol of DO per 
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day. This could be compared to DO consumption in pore waters below a single plant 

(assuming a distribution of one plant per square meter). Using a rough area estimate of the 

rhizosphere for one plant of  ̴ 0.25 m2, then a 10 cm depth section of sediment with a 

porosity of 0.7 (from previous measurements) had a volume of pore water of  ̴ 18 L. Taking 

the minimum Fe(II) consumption estimate above at 12 micromole min-1 (Table 3.1) for 18 

L yielded  ̴ 216 micromole DO demand per minute. Even if the majority of water exchange 

occurred around plants, then the total daily DO mass transfer could maintain the minimum 

observed superoxide production for a little more than an hour in a 10 cm sediment horizon. 

Thus, a significant portion of the observed superoxide production must have been 

maintained by another source of DO, probably root/pore water O2 exchange in this system. 

This process was likely to be a critical step in the generation of additional ROS in the 

rhizosphere. 

The observed correlation Fe(II) and H2O2 in these waters suggested that the 

production of HO. should have occurred in these pore waters via Fenton chemistry. Based 

on measured concentration of Fe(II) and H2O2, an estimate of the production of HO. via 

the Fenton reaction could be calculated. The steady-state assumption for H2O2 was tested 

in a manner similar to that used for superoxide (Eq. 3.4): 

t1/2=
ln 2

kF[Fe2+]0

                                      Eq 3.4 

where [Fe2+]0 was the initial measured Fe(II) concentration and kF = 2.34 x 104 M-1 s-1 

(Gonzales-DaVila et al. 2005).4 

The estimated half-lives of hydrogen peroxide in the majority of samples were < 

16 s, which suggested H2O2 concentrations were maintained at steady state as well as 

superoxide. The product of the superoxide consumption via reaction with Fe(II) calculated 
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above in Eq. 3.3 was H2O2. Thus, under the steady-state assumption, H2O2 production 

equaled superoxide consumption and: 

d[H2O2]

dt
= -

d[O2
.-]

dt
=k1[Fe2+][O2

.-]         Eq 3.5 

where [Fe2+] was the initial measured Fe(II) concentration, [O2
.-] was the average measured 

superoxide concentration and k1 = 1 x 107 M-1 s-1.11 If Fe(II) was not limiting, then H2O2 

production was on the same order as the superoxide production, an assumption that seemed 

to be supported by the correlation observed in Figure 3.10. 

While the model results demonstrated the production of H2O2 in pore water, it is 

important to note that this production could be balanced by an array of consumption 

reactions including but not limited to Fenton-type reactions. These pathways may also 

include reactions with a variety of sulfur species as well as enzymes.  

Studies on salt marsh cordgrass report that Spartina species have peroxidase 

enzymes in their root systems.174,175 The presence of enzymes to break down H2O2 is an 

important adaptation of these plants to overcome peroxide toxicity, which suggests that 

marsh grasses are prone to exposure to high levels of H2O2. Peroxidase enzymes in roots 

also provide a partial explanation to the rapid consumption of H2O2 when Fe is removed 

from the system. It is possible that peroxidase consumes the H2O2 among other organic and 

inorganic species in the pore water that reacts with H2O2. In addition, a number of soil and 

water microorganisms have enzymes with catalase activity which are capable of 

decomposing H2O2.
176,177 
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Estimated Upper Limit for Hydroxyl Radical Production 

Hydroxyl radical production rates for each of the samples were calculated based on 

the measured concentrations of Fe(II), H2O2, and the bimolecular rate constant for the 

Fenton reaction (kF, 2.34 x 104 M-1s-1)4 (Eq. 3.6): 

d[HO
.]

dt
=kF[Fe2+][H2O2]                       Eq 3.6 

The hydroxyl radical production rates calculated with the above rate expression varied 

between 1.2 x 10-5 and 1.7 x 10-9 M s-1 (Table 3.2). These results were on the order of 

laboratory studies of the non-photochemical ROS generation pathway in natural waters.16-

18,178 A detailed multivariate laboratory study of iron cycling by Burns et al. quantified HO. 

generated in a Fe cycling process under typical environmental conditions.16 In that work, 

the authors measured the production of hydroxyl radicals as a function of five different 

factors including Cl-, Br-, I-, total carbonate and natural organic matter (NOM) at varying 

levels bracketing the conditions similar to that encountered in salt marsh systems where 

the field campaigns were conducted. Based on their measurements, the experimental HO. 

production rates varied in the range between 1.7 x 10-5 and 2.0 x 10-7 M s-1. 

The range for the hydroxyl radical production rates predicted using field 

measurements (Table 3.2) were in good agreement with the range calculated using the 

experimental values reported by Burns et. al.16 The field samples with HO. production rates 

below the lower limit of reported laboratory rates by Burns et. al. all had Fe(II) levels lower 

than that used in the laboratory study (< 18 µM). In the pore water matrix, both Fe(II) and 

H2O2 could undergo reactions other than Fenton, lowering the fraction of each reactant that 

would go onto generate HO.. However, our comparisons showed that it was possible to 
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make reasonable predictions about HO. formation using a simplified model based on Fe(II) 

and other more stable ROS associated with the Fe cycle. Being a versatile oxidant, HO. has 

the capacity to play a key role in nutrient remineralization and carbon cycling in intertidal 

salt marsh systems. The field measurements and the model calculations presented here 

show an ROS production pathway connected with Fe cycling and, in turn, demonstrate a 

possible mechanism for oxidation of ambient organic carbon phases alone/or in tandem 

with microbial processes. 

3.6 Conclusion 

Physical mass transport of DO and gas exchange between roots and pore water 

create a dynamic system where dissolved oxygen and chemical constituents are readily 

mixed in the low marsh. The presence of DO up to 35 cm into the sediments further 

signified the heightened water and DO exchange rates in the marsh sediment. Together 

these observations compliment the high submarine groundwater exchange rates reported 

by Moore et al. (2008) for North and South Carolina coastline (329 m3 of flux per meter 

coastline per day). These factors reflect that marsh sediment, traditionally viewed as low 

permeable systems, is capable of supporting higher than expected advective flow, rapid 

mixing between redox zones and the resultant non-photochemical production of ROS. 

Despite the high carbon and sulfur loading in the marsh system, the rhizosphere 

and the surrounding sediment zone appear to maintain oxic/suboxic conditions. The co-

existence Fe(II) with DO indicated both rapid pore water exchange and root gas exchange 

which created a dynamic system where oxygenated water was continuously mixed and 

replenished. As oxygen was introduced to the anoxic/suboxic portion of pore water, oxygen 

acted as an electron acceptor to set off a suite of reactions leading to the generation of 
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numerous transient species. Changes in advective flow with diurnal sediment inundation 

led to mixing of chemical species reflecting a broad range of redox conditions over the 

timescales of a tidal cycle. 

The high correlation observed between Fe(II) and H2O2 further supported the 

possibility for H2O2 and by extension other ROS to be generated via a non-photochemical 

pathway. Model calculations show the non-photochemical pathway can make a significant 

contribution to the overall ROS inventories in these systems. The production of HO. within 

oxic/ anoxic mixing zones in sediments emphasizes its potential for the oxidation of 

organic carbon in these systems. The results indicate that grass-dominated salt marsh 

sediments are an efficient reactor which support the net degradation of terrestrial organic 

matter via both ROS-based and biotic pathways. 
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Table 3.1: Modeled superoxide production rates based on the second order reaction 

between Fe(II) and superoxide observed in the pore water samples. 

Initial Fe(II) (µM) 

measured 

Measured superoxide 

(nM)  

Superoxide production rate  

(µM per minute)  

2.0 7 8 

3.6 20 42 

4.9 4 12 

18.4 17 191 

4.3 2 6 

2.9      32 56 

6.4 16 58 

2.3 13 18 

14.3 3 27 
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Table 3.2: The percentage of H2O2 undergoing Fenton chemistry calculated for different 

pore water samples based on H2O2 production and Fenton reaction rates. 

H2O2 production rate 

(µMs-1) 

H2O2consumption rate  

via Fenton (µMs-1) 

% H2O2  in Fenton 

0.57  0.011  1.96 

0.97  0.013  1.35 

4.45  0.16  3.58 

0.13  0.003  2.55 

0.017  0.002  10.07 

0.71  0.047  6.65 
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Figure 3.1: Fe-ROS cycling at redox fronts in natural waters. 
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Figure 3.2: Sampling site (low tide and high tide) at Folly Beach watershed in 

Charleston, SC. 
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Figure 3.3: Sampling site (low tide) at North Inlet watershed in 

Georgetown, SC. 
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Figure 3.4: A representative calibration curve for H2O2 analysis by the acridinium ester 

method. 

 

 

 

 

 

 

 

 

 

y = 1101.9x - 65237

R² = 0.9833

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

0 100 200 300 400 500 600

co
u

n
ts

[H2O2] nM



www.manaraa.com

94 

 

 

Figure 3.5: A representative calibration curve for superoxide analysis by MCLA method. 
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Figure 3.6(a-d): Concentrations of pore water constituents of samples collected during 

four field campaigns. For samples collected during rising tide, the sampling depths are 

shown in black and falling tide in red. Concentrations of Fe(II) and H2O2 in samples 

collected in August 2015 (2a) from 14:00-16:20,  concentrations of Fe(II), H2O2 and O2
.- 

in pore water samples collected September 2015 (2b) samples were collected from 12:00-

13:30, concentrations of Fe(II), DO, and O2
.- in pore water samples collected in March 

2016 (2c) samples were collected from 11:30-12:22, and concentrations of Fe(II), DO, 

H2O2 and O2
.- in pore water samples collected in May 2016 (2d) rising tide samples were 

collected from 15:45-16:50, falling tide samples were collected between 21:15 and 22:25. 
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Figure 3.7: Variation in DO concentrations in pore water with sampling depth during two 

sampling trips at Folly Beach in March and May 2016. 
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Figure 3.8: Variation in DO concentrations with pore water Fe(II) levels during two 

sampling trips at Folly Beach in March and May 2016. 
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Figure 3.9: Variation in superoxide concentrations in pore water with sampling depth 

during three sampling trips at Folly Beach in March and May 2016 and North Inlet Creek 

in September 2016. 
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Figure 3.10: Variation in measured H2O2 and Fe(II) concentrations of pore water 

samples. 
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Figure 3.11: Conceptual representation of pore water exchange processes in the creek 

bank based on the 224Ra/228Th disequilibrium measurements and direct observations a) 

sediments are exposed twice daily b) sediments inundated twice daily.  
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Figure 3.12: Pore water hydrogen peroxide and superoxide before and after the addition 

of DTPA (~t=30sec). Sample from the Baruch field site collected adjacent to a grass stalk 

at a depth of 5 cm in the sediment. 
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